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Abstract 
There is a well-established literature on the use of concentration measures in informetrics. However, these works 
have usually been devoted to measures of concentration within a productivity distribution. In a recent paper 
Burrell (2005a) introduced two new measures, both based on the Gini ratio, for measuring the similarity of 
concentration of productivity between two different informetric distributions. The first was derived from 
Dagum’s (1987) notion of relative economic affluence; the second – in some ways analogous to the correlation 
coefficient – is a completely new approach. This was extended with further theoretical examples in Burrell 
(2005b). The purpose of this study is to develop a purely empirical approach to comparative studies of 
concentration between informetric data sets using both within and between measures thereby greatly extending 
the original study where Burrell (2005a) considered just two data sets for purposes of illustration of the methods 
of calculation of the measures. 

Introduction 
One of the fundamental descriptions of an informetric process is that of a population of sources 
producing items over a period of time. This covers, for instance, studies of library circulations where 
the sources are the books in a library (the population) and the items are borrowings; citation analysis 
where one considers a body of published work (the population) with the sources being the individual 
papers/articles and the items being the received citations; author productivity where the sources are the 
researchers (in a particular field) and the items are the authored papers. Note that all of these are 
essentially dynamic environments in that they involve production processes that develop over time. 
Indeed, there have been many attempts to propose stochastic models to describe the evolution of such 
processes. This paper is concerned with neither the dynamics nor the modelling, merely with the 
interpretation – and only so far as concentration aspects are concerned – of the distributions. 
 
We begin with the graphical illustration of inequality via the Leimkuhler curve; then we consider the 
measurement of inequality using the Gini index, emphasising the simplest way of calculating it in 
practice; finally we investigate the use of the new measures of comparative concentration. 

The data sets 
All of the data sets used are ones that have previously appeared and been analysed in the literature, 
sometimes extensively and, in several cases, many times over. As we are only interested in the data 
themselves and not their context, let us very briefly describe the sets and their origins together with 
references that the reader can explore for further details. 
 

(i) Applied Geophysics (hereafter referred to as AG). 
This is one of the original data sets studied by Bradford (1934) that helped instigate the ongoing 
industry of proving, reformulating or illustrating the “Bradford law”. We will not follow that well-
worn path here. 
 

(ii) Lubrication (Lub). 
Bradford’s other data set. 
 

(iii) ORSA 
This is a well-known bibliography on operational research introduced and analysed by Kendall (1960) 
as part of an attempt to rationalise mathematically the regularities observed by Bradford (1934). 
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(iv) “Mast Cell” (Mast) 
This is a bibliography covering a period of over 80 years, compiled by Selye (1968), and analysed by 
Goffman & Warren (1969, 1980). 
 

(v) Schistosomiasis (Schi). 
A bibliography covering a 110-year period, also presented by Goffman & Warren (1969, 1980). 
 

(vi) Information Science (Pope). 
This is an extensive bibliography on information science presented by Pope (1985). 
 

(vii) Statistical Methods (Sachs). 
These data have been taken from Egghe (1990) who derived them from Sachs (1986). 
 

(viii) Wishart Library (Wish). 
This is a very small data set relating to the number of loans of books from a University departmental 
library over a three-year period. The background is given in Burrell (1980). 
 

(ix) Sussex University (Suss). 
This is another library circulations data set reported by Burrell (1980), this time a large university 
library. 
 
Note that all the sets (i) – (vii) are discussed in detail by Egghe (1990) where they are subjected to a 
Bradford-type analysis. 

Graphical analysis – The Leimkuhler curve 
Since in practical informetric applications both the number of sources and the number of items will be 
finite, let us write )j(g  for the number of sources producing j items, j = 0, 1, 2, …, n, where n is the 
largest observed productivity, N  for the total number of sources, and M  for the total number of items 
produced.  
 
Then, 

j
N g( j)= ∑ , )j(jgM

j
∑=   

 
and mean number of items produced per source = M/N. 

Definition/Notation 
Tail distribution function = proportion of sources producing at least j items   

= N/)k(g)j(
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Tail-moment distribution function = proportion of items accounted for by those 

sources producing at least j items 
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Of course, since we only have a finite number of sources, and a maximum observed productivity, n , 
the above sums are in fact from j to n  and note that 0)j()j( =Ψ=Φ  for j > n . 
 
Note:  As has been pointed out before, by e.g. Burrell (1991, 1992b, 2005b), using the standard 
convention for ranking sources in decreasing order of production, 
NΦ(j) = )k(g

jk
∑

≥

 =  number of sources producing at least j items 
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                             =  rank of a source producing j items 
                             = )j(r , say, for j = 0, 1, 2, … , n , 
so that the tail distribution function can be thought of as the normalised form of the rank, r, as used in 
Egghe (1990). 
 
Similarly MΨ(j) = 

k j
kg(k)

≥
∑  = cumulative number of items produced by sources 

                                                               producing at least j items each 
                                                   = R(j), say, for j = 0, 1, 2, …, n 
so that the tail-moment distribution is the normalised form of R in Egghe (1990). 
 
Note. (i) It is important to note both here and later that, in the above, “rank” can be defined for each 
productivity j, whether or not there is a source with this productivity.  

(ii) The original Bradford (1934) graphical analysis (see also e.g. Egghe (1990)) is essentially a 
plot of )j(Ψ  against )j(logΦ , see Burrell (1992b), compared with the plot of )j(Ψ  against )j(Φ  
which we will consider here and gives what we term the Leimkuhler curve. This is a well-known 
method of representing informetric data sets graphically. It is closely connected with the well-known 
Lorenz curve from econometrics; see Burrell (1991, 1992b,c, 2005c). 
 
The construction of the Leimkuhler curve is straightforward, the required calculations being illustrated 
in Table 1 for the Wishart library data – this being the smallest set considered. In this particular 
context, “items” correspond to “loans” and “sources” to “books”. The r(j) and R(j) columns are found 
by cumulating from the bottom the g(j) and jg(j) columns respectively. 

Table 1. Calculation of Φ and Ψ functions for the Wishart data. 

No. items, j No. sources, g(j) r(j) Φ(j) jg(j) R(j) Ψ(j) 
1 65 N=122 1.000 65 M=243 1.000 
2 26 57 00.467 52 178 0.733 
3 12 31 0.254 36 126 0.519 
4 10 19 0.156 40 90 0.370 
5 5 9 0.074 25 50 0.206 
6 3 4 0.033 18 25 0.103 
7 1 1 0.008 7 7 0.029 
>7 0 0 0.000 0 0 0.000 

 
Notice that what we really construct is a plot of distinct points, as in Figure 1.  
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Figure 1. Basic Leimkuhler plot 
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The standard presentation of the Leimkuhler curve would then convert this into a simple polygonal 
plot by joining the plotted points with straight lines. Instead, since we are only concerned with the 
overall visual presentation, and comparisons between different plots, in Figure 2 (a) – (i) we have 
suppressed the original data points and merely give “smooth curve” approximations of the polygonal 
plots. 
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Figure 2(a). Leimkuhler curve, Pope 
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Figure 2(b). Leimkuhler curve, Schi 
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Figure 2(c). Leimkuhler curve, ORSA 
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Figure 2(d). Leimkuhler curve, Sachs 
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Figure 2(e). Leimkuhler curve, Mast 
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Figure 2(f). Leimkuhler curve, AG 
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Figure 2(g). Leimkuhler curve, Lub 

 

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

Tail distribution, phi

Ta
il-

m
om

en
t d

is
tr

ib
ut

io
n,

 p
si

 
Figure 2(h). Leimkuhler curve, Wish 
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Figure 2(i). Leimkuhler curve, Suss 

Note that we have ordered these graphs not as in our original listing of the data sets but according to 
their general geometric form. Recall that in a situation where all sources are equally productive, the 
Leimkuhler curve would be of the form Ψ = Φ, corresponding to the main diagonal in these graphs, 
whereas at the other extreme where all productivity is within a single source, the graph would consist 
of the vertical line through Φ = 0 and the horizontal through Ψ = 1. Indeed, it is well known (Burrell, 
1991) that in general the standard Gini coefficient of concentration (see next section) is given 
geometrically as twice the area between the Leimkuhler curve and the main diagonal Φ = Ψ. Hence 
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our ordering has been chosen so that the data sets are given in decreasing order of concentration (as 
measured by the Gini coefficient) as we move through from (a) to (i). 
In Figure 2 (a) – (i) we have also given the other diagonal corresponding to Φ + Ψ = 1 to illustrate that, 
at least in the cases (a) – (g), most of the contribution to the Gini coefficient comes from the lower end 
of the curve, which of course corresponds to the most productive sources. In other words, in these 
examples, productivity is concentrated in the most productive sources.  
 
As an aside, it is interesting to note that all of the curves (a) – (f) pass fairly close to the intersection of 
the line Ψ = 0.8 and the line Φ + Ψ =1, which intersection indicates the ubiquitous 80/20 rule, see 
Trueswell (1969) and Burrell (1985). (Some of the later cases indicate something more like a 75/25 
rule, an accepted variant.) 
 
Remark. It might appear that what we have is a sequence of curves in which each one “dominates” – 
i.e. always lies above – the next; in fact there are cases where the curves intersect. In such cases a 
graphical approach is not totally adequate in itself. We shall not discuss the case of intersecting 
Leimkuhler curves further but refer the reader to Fellman (1976), Rousseau (1992), Burrell(1992a, 
2005c) and Lambert(2001) for more details. 

Numerical analysis – The Gini coefficient 
The Gini coefficient is usually held to be one of the, if not the, best inequality measures in that it obeys 
all seven of the “desirable” properties proposed by Dalton (1920) for such a measure, see Dagum 
(1983). One of these properties is that it is invariant under scale, or is independent of the unit of 
measurement. (Note that the Leimkuhler curve also has this scale-invariance property.) This is clearly 
almost a necessary property in measuring inequality within a population; for instance in measuring the 
inequality of incomes within a population it should clearly be immaterial whether income is measured 
in £stg or Euros. There are many different ways of formulating and calculating the Gini coefficient 
(Yitzhaki, 1998) of concentration. The one that seems easiest to use for the purposes of calculation 
with the types of distributions we are considering is given by: 

Gini coefficient = 

n
2

j 1
r( j)

1
NM

=γ = −
∑

 

n
2

j 1
( j)

1
M / N

=

Φ
= −

∑
     (1) 

See Arnold & Laguna (1977), Dorfman (1979), Burrell (1991, 1992a, 2005a,b), Yitzhaki (1998) and  
Kleiber & Kotz (2003, p30).  
 
We find it useful to also consider also  

Coefficient of equality = 

n
2

j 1
r( j)

1
NM

=θ = − γ =
∑

n
2

j 1
( j)

M / N
=

Φ
=

∑
    (2) 

(See Burrell, 2005a,b.) 
 
It is important to stress that in both (1) and (2) above, the summation is over all values of j from 1 to n 
– i.e. the maximal observed production - including those j for which g(j) = 0.  
 
The summary statistics are given in Table 2 for all the data sets, in decreasing order of γ. The ordering 
of the sets reflects that given in the graphical presentations in Figure 2. Note that there is a weak 
relationship between the mean productivity and the Gini coefficient of the data sets, illustrating that 
these address related but different features. 
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Table 2. Summary statistics for the individual data sets. 

Source n N M Mean ∑r² γ θ 
Pope 261 1011 7368 7.288 1794480 0.7591 0.2409 
Schi 325 1738 9914 5.704 4864540 0.7177 0.2823 
ORSA 242 370 1763 4.765 205023 0.6857 0.3143 
Sachs  64 143 850 5.790 38402 0.6841 0.3159 
Mast  66 587 2378 4.051 519586 0.6277 0.3723 
AG  93 326 1332 4.086 166066 0.6176 0.3824 
Lub 22 164 395 2.409 33933 0.4762 0.5238 
Wish 7 122 243 1.992 19553 0.3404 0.6596 
Suss 14 18854 37877 2.009 471802611 0.3393 0.6607 

 
It is interesting to note that while construction of the Leimkuhler curve requires both Φ and Ψ, or r and 
R, calculation of the Gini coefficient γ only requires Φ, or r. 

The co-concentration coefficient 
The two measures introduced by Burrell (2005a) are both based upon the Gini ratio, defined by 
Dagum (1987). The idea behind the construction of the Gini ratio between two populations is exactly 
analogous to that of the Gini coefficient for a single population, namely we look at pairs of sources, 
but now one from each population, find the absolute difference between their productivities and 
average this difference over all possible pairs.  Details of the construction, and methods of calculation 
are given in Burrell (2005a). Here we just repeat the formulae required for empirical studies. 
 
When comparing two populations or data sets, let us distinguish between them by the use of suffices X 
and Y.  
Definition. Assuming, without loss of generality, that YX nn ≤ , the empirical Gini ratio is given by 

YXYX

n

1j
YX

NMMN

)j(r)j(r2
1)Y,X(G

X

+
−=

∑
=         (3) 

 
The summation terminates at Xnj =  since 0)j(rX =  for all larger j, but again we stress that the 
summation is over all j from 1 to nX. Note that for evaluation of this ratio, we need to determine the 
sum of rank products. An illustration of the calculation is given by Burrell (2005a). 
 
Although the Gini ratio gives some sort of measure of the degree of similarity/dissimilarity between 
two productivity distributions so far as their concentration/inequality is concerned, it is not very 
informative on its own. One problem is that the ratio is minimised when the two distributions are the 
same whereas we would like a comparative measure to be maximised in this situation. This is easily 
resolved if we instead of (3) we use: 

YXYX

n

1j
YX

NMMN

)j(r)j(r2
)Y,X(G1)Y,X(H

X

+
=−=

∑
=       (4) 

 
The other major problem for comparative studies is that H is not normalised. To address this, Burrell 
(2005a) proposes the following: 
 
Definition. The coefficient of co-concentration or co-concentration coefficient is given by 

)1)(1(
))Y,X(G1()Y,X(H)Y,X(Q

YXYX γ−γ−
−

=
θθ

=        (5) 
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Then we have 
Theorem  (Burrell, 2005a, Theorem 2)  
Q(X,Y) is a normalised measure in that 0 < Q(X,Y) < 1 and we get Q(X,Y) = 1 if and only if the 
(probability) distributions of the two populations are the same. 
 
Aside. If we combine the expression (4) for H(X,Y) above with, from (2)  

YYXX

n
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2
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2
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we find the empirical Q-measure as 
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∑
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Although (7) gives a single formula for Q, for purposes of practical computation – particularly if 
carried out “by hand” – it is more convenient to calculate H(X,Y), θX and θY separately and then 
substitute from (4) and (6) into the expression (5) for Q(X,Y) as given in the definition. Note that in 
the calculation of Q(X,Y), the only new quantity that needs to be computed is the sum of the rank 

cross-product terms, i.e. the 
Xn

X Y
j 1

r ( j)r ( j)
=
∑ , where in each case the summation is from j = 1 to the 

smaller of nX and nY. 
 
Note. In practical cases it has been argued in Burrell (2005b) that, because when comparing 
distributions of similar general form – such as the long right-tailed distributions frequently 
encountered in informetrics – the Q value can be very close to one, it is more informative to instead 
consider Q2. This is analogous to using the coefficient of determination rather than the standard 
correlation coefficient in regression analysis and this is the way we proceed in the following. The Q2 
matrix is given for all the data sets in Table 3. 
 
The calculated values of Q2 in Table 3 vary from 0.549 to 0.999 – of course Q2(X,X) = 1 in all cases, 
but some general patterns and features can be discerned. The tendency is for values being higher the 
closer are the values of the Gini coefficient, smaller values corresponding to pairs whose Gini 
coefficients are further apart. Note also that for a pair of data sets having similar Gini coefficients – 
look in particular at Mast & AG and at Wish & Suss – the rows of Q2 values are very similar, in other 
words each member of the pair has the same sort of co-concentration with each of the other data sets. 

Table 3. The Co-Concentration or Q2 matrix. 

Source Pope Schi ORSA Sachs Mast AG Lub Wish Suss γ 
Pope 1.000 0.975 0.963 0.963 0.899 0.883 0.657 0.549 0.552 0.7591
Schi 0.975 1.000 0.986 0.966 0.962 0.961 0.800 0.676 0.679 0.7177
ORSA 0.963 0.986 1.000 0.928 0.986 0.989 0.859 0.763 0.765 0.6857
Sachs 0.963 0.966 0.928 1.000 0.924 0.908 0.697 0.587 0.589 0.6841
Mast 0.889 0.962 0.986 0.924 1.000 0.992 0.895 0.795 0.797 0.6277
AG 0.883 0.961 0.989 0.908 0.992 1.000 0.896 0.808 0.810 0.6176
Lub 0.657 0.800 0.859 0.697 0.895 0.896 1.000 0.965 0.964 0.4762
Wish 0.549 0.676 0.763 0.587 0.795 0.808 0.965 1.000 0.999 0.3404
Suss 0.552 0.679 0.765 0.589 0.797 0.810 0.964 0.999 1.000 0.3393

The relative concentration coefficient 
This measure, an adaptation of Dagum’s relative economic affluence (Dagum, 1987), is also based on 
the Gini ratio and its empirical form is given by (Burrell, 2005a,b) 
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where we have written 
X

X

N
MX =  and 

Y

Y

N
MY =  for the two sample mean productivities and have 

assumed, wlog that XY ≥ . (The ranges of summation in the above are as before.) 
It can be shown (Burrell, 2005a, Proposition 5, Corollary) that the relative concentration coefficient is 
also normalized in that it lies between 0 and 1 and the upper bound is achieved if and only if the two 
means are the same. In fact, as pointed out in Burrell (2005b), if the two means are not the same then 
the upper bound is given by the ratio of the smaller to the larger. To get around this objection, we 
instead consider the (modified) relative concentration coefficient proposed by Burrell (2005b). 

X Y Y X*

X Y X Y

1 ( r r ) / N MYD (X, Y) D(X, Y)
X 1 ( r r ) / N M

−
= =

−
∑
∑

      (9) 

where we are still assuming wlog that  XY ≥ , so that X Y Y XN M N M≥ . 
 
The D* matrix of relative concentration coefficients is given in Table 4. Note that in the construction 
of this matrix we have ordered the data sets in decreasing order of mean productivity, reflecting the 
crucial role of the mean in the construction of the coefficient. Again we can note the general features 
of the matrix – in this case more clear cut than for the Q2-matrix. The further apart are the means, the 
smaller is the D*-value. Also, pairs of data sets with similar mean productivities, e.g. Sachs & Schi, 
AG & Mast and Suss & Wish, have very similar rows of coefficients, so very similar relative 
concentrations with each of the other data sets. 

Table 4.  The relative concentration or D* matrix 

Source Pope Sachs Schi ORSA AG Mast Lub Suss Wish Mean 
Pope 1.000 0.926 0.917 0.855 0.776 0.775 0.520 0.388 0.384 7.288 
Sachs 0.926 1.000 0.983 0.907 0.824 0.821 0.540 0.400 0.396 5.790 
Schi 0.917 0.983 1.000 0.927 0.849 0.848 0.565 0.417 0.413 5.704 
ORSA 0.855 0.907 0.927 1.000 0.922 0.919 0.614 0.458 0.453 4.765 
AG 0.776 0.824 0.849 0.922 1.000 0.995 0.647 0.474 0.469 4.086 
Mast 0.775 0.821 0.848 0.919 0.995 1.000 0.659 0.497 0.492 4.051 
Lub 0.520 0.540 0.565 0.614 0.647 0.659 1.000 0.776 0.766 2.409 
Suss 0.388 0.400 0.417 0.458 0.474 0.497 0.776 1.000 0.983 2.009 
Wish 0.384 0.396 0.413 0.453 0.469 0.492 0.766 0.983 1.000 1.992 

 
Remark. Note that although both the co-concentration and relative concentration coefficients involve 
the rank products through X Yr r∑ , the other quantitative information required to calculate D* is 
considerably less than that for Q2. For instance the calculation of Q2 requires the sum of squared ranks 
while D* does not. This reflects the fact that D* is primarily based upon the relative means of the 
distributions while Q2 is based upon their relative concentrations. 

Concluding remarks 
We have tried to illustrate several different but related approaches to measuring the similarity, or 
otherwise, of concentration between different informetric data sets; the main thrust being the empirical 
analysis of comparative studies.  The results reported here are certainly not definitive but we would 
hope to have encouraged others to make use of the methods to increase understanding of the 
appropriate interpretation of the measures through further empirical work. Two obvious areas of 
possible application would be the investigation of  
 

(i) differences between different subject areas, possibly as a complement to consideration of 
differences of impact factors  
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(ii) differences over different time periods, either for year-by-year changes or for the 
evolutionary distributional change over extending periods of time. 

 
As a final thought, although our examples have been in the familiar context of sources producing 
items, there is no reason why the same sort of approach could not be adopted in other informetric 
contexts such as citation age distributions. Again, investigation of differences between different 
subject areas should be of interest. 
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