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Abstract

There is a well-established literature on the use of concentration measures in informetrics. However, these works
have usually been devoted to measures of concentration within a productivity distribution. In a recent paper
Burrell (2005a) introduced two new measures, both based on the Gini ratio, for measuring the similarity of
concentration of productivity between two different informetric distributions. The first was derived from
Dagum’s (1987) notion of relative economic affluence; the second — in some ways analogous to the correlation
coefficient — is a completely new approach. This was extended with further theoretical examples in Burrell
(2005b). The purpose of this study is to develop a purely empirical approach to comparative studies of
concentration between informetric data sets using both within and between measures thereby greatly extending
the original study where Burrell (2005a) considered just two data sets for purposes of illustration of the methods
of calculation of the measures.

Introduction

One of the fundamental descriptions of an informetric process is that of a population of sources
producing items over a period of time. This covers, for instance, studies of library circulations where
the sources are the books in a library (the population) and the items are borrowings; citation analysis
where one considers a body of published work (the population) with the sources being the individual
papers/articles and the items being the received citations; author productivity where the sources are the
researchers (in a particular field) and the items are the authored papers. Note that all of these are
essentially dynamic environments in that they involve production processes that develop over time.
Indeed, there have been many attempts to propose stochastic models to describe the evolution of such
processes. This paper is concerned with neither the dynamics nor the modelling, merely with the
interpretation — and only so far as concentration aspects are concerned — of the distributions.

We begin with the graphical illustration of inequality via the Leimkuhler curve; then we consider the
measurement of inequality using the Gini index, emphasising the simplest way of calculating it in
practice; finally we investigate the use of the new measures of comparative concentration.

The data sets

All of the data sets used are ones that have previously appeared and been analysed in the literature,
sometimes extensively and, in several cases, many times over. As we are only interested in the data
themselves and not their context, let us very briefly describe the sets and their origins together with
references that the reader can explore for further details.

(i) Applied Geophysics (hereafter referred to as AG).
This is one of the original data sets studied by Bradford (1934) that helped instigate the ongoing
industry of proving, reformulating or illustrating the “Bradford law”. We will not follow that well-
worn path here.

(i) Lubrication (Lub).
Bradford’s other data set.

(ii)  ORSA
This is a well-known bibliography on operational research introduced and analysed by Kendall (1960)
as part of an attempt to rationalise mathematically the regularities observed by Bradford (1934).
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(iv) “Mast Cell” (Mast)
This is a bibliography covering a period of over 80 years, compiled by Selye (1968), and analysed by
Goffman & Warren (1969, 1980).

(V) Schistosomiasis (Schi).
A bibliography covering a 110-year period, also presented by Goffman & Warren (1969, 1980).

(vi) Information Science (Pope).
This is an extensive bibliography on information science presented by Pope (1985).

(vii)  Statistical Methods (Sachs).
These data have been taken from Egghe (1990) who derived them from Sachs (1986).

(viii)  Wishart Library (Wish).
This is a very small data set relating to the number of loans of books from a University departmental
library over a three-year period. The background is given in Burrell (1980).

(ix) Sussex University (Suss).
This is another library circulations data set reported by Burrell (1980), this time a large university
library.

Note that all the sets (i) — (vii) are discussed in detail by Egghe (1990) where they are subjected to a
Bradford-type analysis.

Graphical analysis — The Leimkuhler curve
Since in practical informetric applications both the number of sources and the number of items will be
finite, let us write g(j) for the number of sources producing j items, j = 0, 1, 2, ..., n, where n is the

largest observed productivity, N for the total number of sources, and M for the total number of items
produced.

Then, N = Zg(j), M = ng(j)

and mean number of items produced per source = M/N.

Definition/Notation
Tail distribution function = proportion of sources producing at least j items

=0 = (Z g(k)j/N ,

k>j

Tail-moment distribution function = proportion of items accounted for by those
sources producing at least j items

=Y = (Z kg(k)J/ M

k>

Of course, since we only have a finite number of sources, and a maximum observed productivity, n,
the above sums are in fact from j to n and note that ®(j) = ¥ (j) =0 forj> n.

Note: As has been pointed out before, by e.g. Burrell (1991, 1992b, 2005b), using the standard
convention for ranking sources in decreasing order of production,

NO() = Z g(k) = number of sources producing at least j items
i)
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rank of a source producing j items

r(j), say, forj=0,1,2,..., n,

so that the tail distribution function can be thought of as the normalised form of the rank, r, as used in
Egghe (1990).

Similarly MY(j) = z kg(k) = cumulative number of items produced by sources
k>
producing at least j items each
=R(j), say, forj=0,1,2,...,n
so that the tail-moment distribution is the normalised form of R in Egghe (1990).

Note. (i) It is important to note both here and later that, in the above, “rank” can be defined for each
productivity j, whether or not there is a source with this productivity.

(i1) The original Bradford (1934) graphical analysis (see also e.g. Egghe (1990)) is essentially a
plot of W(j) against log®(j), see Burrell (1992b), compared with the plot of W(j) against D(])

which we will consider here and gives what we term the Leimkuhler curve. This is a well-known
method of representing informetric data sets graphically. It is closely connected with the well-known
Lorenz curve from econometrics; see Burrell (1991, 1992b,c, 2005¢).

The construction of the Leimkuhler curve is straightforward, the required calculations being illustrated
in Table 1 for the Wishart library data — this being the smallest set considered. In this particular
context, “items” correspond to “loans” and “sources” to “books”. The 1(j) and R(j) columns are found
by cumulating from the bottom the g(j) and jg(j) columns respectively.

Table 1. Calculation of ® and ¥ functions for the Wishart data.

No. items, j | No. sources, g(j) | r(j) D)) jg@ | R@G) Y(j)

1 65 | N=122 | 1.000 65 | M=243 | 1.000
2 26 57 1 00.467 52 178 | 0.733
3 12 3110.254 36 126 | 0.519
4 10 19 | 0.156 40 90 | 0.370
5 5 910.074 25 50 | 0.206
6 3 410.033 18 2510.103
7 1 1 ]0.008 7 7 10.029
>7 0 0 | 0.000 0 0 | 0.000

Notice that what we really construct is a plot of distinct points, as in Figure 1.
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Figure 1. Basic Leimkuhler plot
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The standard presentation of the Leimkuhler curve would then convert this into a simple polygonal
plot by joining the plotted points with straight lines. Instead, since we are only concerned with the
overall visual presentation, and comparisons between different plots, in Figure 2 (a) — (i) we have
suppressed the original data points and merely give “smooth curve” approximations of the polygonal

plots.
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Figure 2(a). Leimkuhler curve, Pope
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Figure 2(b). Leimkuhler curve, Schi
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Figure 2(c). Leimkuhler curve, ORSA
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Figure 2(d). Leimkuhler curve, Sachs
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Figure 2(e). Leimkuhler curve, Mast
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Figure 2(f). Leimkuhler curve, AG
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Tail-moment distribution, psi

Note that we have ordered these graphs not as in our original listing of the data sets but according to
their general geometric form. Recall that in a situation where all sources are equally productive, the
Leimkuhler curve would be of the form ¥ = ®, corresponding to the main diagonal in these graphs,
whereas at the other extreme where all productivity is within a single source, the graph would consist
of the vertical line through @ = 0 and the horizontal through ¥ = 1. Indeed, it is well known (Burrell,
1991) that in general the standard Gini coefficient of concentration (see next section) is given
geometrically as twice the area between the Leimkuhler curve and the main diagonal ® = V. Hence
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Figure 2(g). Leimkuhler curve, Lub
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Figure 2(h). Leimkuhler curve, Wish
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Figure 2(i). Leimkuhler curve, Suss
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our ordering has been chosen so that the data sets are given in decreasing order of concentration (as
measured by the Gini coefficient) as we move through from (a) to (i).

In Figure 2 (a) — (i) we have also given the other diagonal corresponding to @ + ¥ = 1 to illustrate that,
at least in the cases (a) — (g), most of the contribution to the Gini coefficient comes from the lower end
of the curve, which of course corresponds to the most productive sources. In other words, in these
examples, productivity is concentrated in the most productive sources.

As an aside, it is interesting to note that all of the curves (a) — (f) pass fairly close to the intersection of
the line ¥ = 0.8 and the line ® + ¥ =1, which intersection indicates the ubiquitous 80/20 rule, see
Trueswell (1969) and Burrell (1985). (Some of the later cases indicate something more like a 75/25
rule, an accepted variant.)

Remark. It might appear that what we have is a sequence of curves in which each one “dominates” —
i.e. always lies above — the next; in fact there are cases where the curves intersect. In such cases a
graphical approach is not totally adequate in itself. We shall not discuss the case of intersecting
Leimkuhler curves further but refer the reader to Fellman (1976), Rousseau (1992), Burrell(1992a,
2005c) and Lambert(2001) for more details.

Numerical analysis — The Gini coefficient

The Gini coefficient is usually held to be one of the, if not the, best inequality measures in that it obeys
all seven of the “desirable” properties proposed by Dalton (1920) for such a measure, see Dagum
(1983). One of these properties is that it is invariant under scale, or is independent of the unit of
measurement. (Note that the Leimkuhler curve also has this scale-invariance property.) This is clearly
almost a necessary property in measuring inequality within a population; for instance in measuring the
inequality of incomes within a population it should clearly be immaterial whether income is measured
in £stg or Euros. There are many different ways of formulating and calculating the Gini coefficient
(Yitzhaki, 1998) of concentration. The one that seems easiest to use for the purposes of calculation
with the types of distributions we are considering is given by:

219’ 2 O(j)’
Gini coefficient = y =1 —-= =1-= (1)
NM M/N
See Arnold & Laguna (1977), Dorfman (1979), Burrell (1991, 1992a, 2005a,b), Yitzhaki (1998) and
Kleiber & Kotz (2003, p30).

We find it useful to also consider also

> D o))
Coefficient of equality = 0 =1—v = = = 2
quality Y NM MUN (2)

(See Burrell, 2005a,b.)

It is important to stress that in both (1) and (2) above, the summation is over all values of j from 1 to n
—i.e. the maximal observed production - including those j for which g(j) = 0.

The summary statistics are given in Table 2 for all the data sets, in decreasing order of y. The ordering
of the sets reflects that given in the graphical presentations in Figure 2. Note that there is a weak
relationship between the mean productivity and the Gini coefficient of the data sets, illustrating that
these address related but different features.
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Table 2. Summary statistics for the individual data sets.

Source | n N M Mean | Y r? v 0

Pope | 261 | 1011 7368 | 7.288 1794480 | 0.7591 | 0.2409
Schi 325 | 1738 9914 | 5.704 4864540 | 0.7177 | 0.2823
ORSA | 242 370 | 1763 | 4.765 205023 | 0.6857 | 0.3143

Sachs 64 143 850 | 5.790 38402 | 0.6841 | 0.3159
Mast 66 587 | 2378 | 4.051 519586 | 0.6277 | 0.3723
AG 93 326 | 1332 |4.086 166066 | 0.6176 | 0.3824
Lub 22 164 395 | 2.409 33933 | 0.4762 | 0.5238
Wish 7 122 243 1 1.992 19553 | 0.3404 | 0.6596

Suss 14 | 18854 | 37877 | 2.009 | 471802611 | 0.3393 | 0.6607

It is interesting to note that while construction of the Leimkuhler curve requires both ® and ¥, or r and
R, calculation of the Gini coefficient y only requires @, or r.

The co-concentration coefficient

The two measures introduced by Burrell (2005a) are both based upon the Gini ratio, defined by
Dagum (1987). The idea behind the construction of the Gini ratio between two populations is exactly
analogous to that of the Gini coefficient for a single population, namely we look at pairs of sources,
but now one from each population, find the absolute difference between their productivities and
average this difference over all possible pairs. Details of the construction, and methods of calculation
are given in Burrell (2005a). Here we just repeat the formulae required for empirical studies.

When comparing two populations or data sets, let us distinguish between them by the use of suffices X
and Y.

Definition. Assuming, without loss of generality, that n,, <n. , the empirical Gini ratio is given by

23 1 (i, ()

G(X,Y)=1-—2" 3)
NM, + M\N,

The summation terminates at j=n, since Iy (j) =0 for all larger j, but again we stress that the

summation is over all j from 1 to nx. Note that for evaluation of this ratio, we need to determine the
sum of rank products. An illustration of the calculation is given by Burrell (2005a).

Although the Gini ratio gives some sort of measure of the degree of similarity/dissimilarity between
two productivity distributions so far as their concentration/inequality is concerned, it is not very
informative on its own. One problem is that the ratio is minimised when the two distributions are the
same whereas we would like a comparative measure to be maximised in this situation. This is easily
resolved if we instead of (3) we use:

23 (ry ()

HX,Y)=1-G(X,Y)=—=2 4
(X,Y) ( )NXMY+MXNY 4)

The other major problem for comparative studies is that H is not normalised. To address this, Burrell
(2005a) proposes the following:

Definition. The coefficient of co-concentration or co-concentration coefficient is given by
H(X,Y 1-G(X,Y
mxm:( ) ( (X,Y)) 5)
\/eXeY \/(I_YX)(I_YY)
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Then we have

Theorem (Burrell, 2005a, Theorem 2)

Q(X,Y) is a normalised measure in that 0 < Q(X,Y) < 1 and we get Q(X,Y) = 1 if and only if the
(probability) distributions of the two populations are the same.

Aside. If we combine the expression (4) for H(X,Y) above with, from (2)

(nzxrx (j)zj(nzer (j)zj

0.0, =(1- 1- =
xOy =(0=y)d-7vy) N M, N M,

we find the empirical Q-measure as

OX.Y) = 2INNMING M, Y rgry XY 2y o
, NyMy +MyNy s \Y e X+Y) E Iy X E Iy )

Although (7) gives a single formula for Q, for purposes of practical computation — particularly if
carried out “by hand” — it is more convenient to calculate H(X,Y), 0x and 0y separately and then
substitute from (4) and (6) into the expression (5) for Q(X,Y) as given in the definition. Note that in
the calculation of Q(X,Y), the only new quantity that needs to be computed is the sum of the rank

(6)

nx

cross-product terms, i.e. the er ()1, (J) , where in each case the summation is from j = 1 to the
i=l

smaller of nx and ny.

Note. In practical cases it has been argued in Burrell (2005b) that, because when comparing
distributions of similar general form — such as the long right-tailed distributions frequently
encountered in informetrics — the Q value can be very close to one, it is more informative to instead
consider Q. This is analogous to using the coefficient of determination rather than the standard
correlation coefficient in regression analysis and this is the way we proceed in the following. The Q*
matrix is given for all the data sets in Table 3.

The calculated values of Q in Table 3 vary from 0.549 to 0.999 — of course Q*(X,X) = 1 in all cases,
but some general patterns and features can be discerned. The tendency is for values being higher the
closer are the values of the Gini coefficient, smaller values corresponding to pairs whose Gini
coefficients are further apart. Note also that for a pair of data sets having similar Gini coefficients —
look in particular at Mast & AG and at Wish & Suss — the rows of Q? values are very similar, in other
words each member of the pair has the same sort of co-concentration with each of the other data sets.

Table 3. The Co-Concentration or Q* matrix.

Source | Pope | Schi | ORSA | Sachs | Mast | AG | Lub | Wish | Suss Y

Pope 1.000 | 0.975 | 0.963 | 0.963 | 0.899 | 0.883 | 0.657 | 0.549 | 0.552 | 0.7591
Schi 0.975 1 1.000 | 0.986 | 0.966 | 0.962 | 0.961 | 0.800 | 0.676 | 0.679 | 0.7177
ORSA | 0.963 | 0986 | 1.000 | 0.928 | 0.986 | 0.989 | 0.859 | 0.763 | 0.765 | 0.6857
Sachs | 0.963 | 0.966 | 0.928 | 1.000 | 0.924 | 0.908 | 0.697 | 0.587 | 0.589 | 0.6841
Mast | 0.889 | 0.962 | 0.986 | 0.924 | 1.000 | 0.992 | 0.895 | 0.795 | 0.797 | 0.6277
AG 0.883 1 0.961 | 0.989 | 0.908 | 0.992 | 1.000 | 0.896 | 0.808 | 0.810 | 0.6176
Lub 0.657 | 0.800 | 0.859 | 0.697 | 0.895 | 0.896 | 1.000 | 0.965 | 0.964 | 0.4762
Wish | 0.549 | 0.676 | 0.763 | 0.587 | 0.795 | 0.808 | 0.965 | 1.000 | 0.999 | 0.3404
Suss 0.552 1 0.679 | 0.765 | 0.589 | 0.797 | 0.810 | 0.964 | 0.999 | 1.000 | 0.3393

The relative concentration coefficient
This measure, an adaptation of Dagum’s relative economic affluence (Dagum, 1987), is also based on
the Gini ratio and its empirical form is given by (Burrell, 2005a,b)
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DX, Y) = Y—(erry )/NXN _ @®
’ Y (ZrXrY )/NXNY NyM, —ZrXrY

where we have written X = and Y = % for the two sample mean productivities and have
X Y

assumed, wlog that Y > X . (The ranges of summation in the above are as before.)

It can be shown (Burrell, 2005a, Proposition 5, Corollary) that the relative concentration coefficient is
also normalized in that it lies between 0 and 1 and the upper bound is achieved if and only if the two
means are the same. In fact, as pointed out in Burrell (2005b), if the two means are not the same then
the upper bound is given by the ratio of the smaller to the larger. To get around this objection, we

instead consider the (modified) relative concentration coefficient proposed by Burrell (2005b).

. Y 1-(Q )/ NyM
D'(X,Y)==D(X,Y) = (i) /Ny My
X 1-(Q ety )/ NyM,,

where we are still assuming wlog that Y > X, so that N, M, > N, M, .

©)

The D* matrix of relative concentration coefficients is given in Table 4. Note that in the construction
of this matrix we have ordered the data sets in decreasing order of mean productivity, reflecting the
crucial role of the mean in the construction of the coefficient. Again we can note the general features
of the matrix — in this case more clear cut than for the Q*-matrix. The further apart are the means, the
smaller is the D -value. Also, pairs of data sets with similar mean productivities, e.g. Sachs & Schi,
AG & Mast and Suss & Wish, have very similar rows of coefficients, so very similar relative
concentrations with each of the other data sets.

Table 4. The relative concentration or D* matrix

Source | Pope | Sachs | Schi | ORSA | AG | Mast | Lub | Suss | Wish | Mean
Pope 1.000 | 0.926 | 0.917 | 0.855 | 0.776 | 0.775 | 0.520 | 0.388 | 0.384 | 7.288
Sachs 0.926 | 1.000 | 0.983 | 0.907 | 0.824 | 0.821 | 0.540 | 0.400 | 0.396 | 5.790
Schi 0.917 | 0.983 | 1.000 | 0.927 | 0.849 | 0.848 | 0.565 | 0.417 | 0.413 | 5.704
ORSA | 0.855 ] 0.907 | 0.927 | 1.000 | 0.922 | 0.919 | 0.614 | 0.458 | 0.453 | 4.765
AG 0.776 | 0.824 | 0.849 | 0.922 | 1.000 | 0.995 | 0.647 | 0.474 | 0.469 | 4.086
Mast 0.775 | 0.821 | 0.848 | 0.919 | 0.995 | 1.000 | 0.659 | 0.497 | 0.492 | 4.051
Lub 0.520 | 0.540 | 0.565 | 0.614 | 0.647 | 0.659 | 1.000 | 0.776 | 0.766 | 2.409
Suss 0.388 | 0.400 | 0.417 | 0.458 | 0.474 | 0.497 | 0.776 | 1.000 | 0.983 | 2.009
Wish 0.384 | 0.396 | 0.413 | 0.453 | 0.469 | 0.492 | 0.766 | 0.983 | 1.000 | 1.992

Remark. Note that although both the co-concentration and relative concentration coefficients involve
the rank products through ZrXrY, the other quantitative information required to calculate D* is

considerably less than that for Q. For instance the calculation of Q requires the sum of squared ranks
while D” does not. This reflects the fact that D” is primarily based upon the relative means of the
distributions while Q” is based upon their relative concentrations.

Concluding remarks

We have tried to illustrate several different but related approaches to measuring the similarity, or
otherwise, of concentration between different informetric data sets; the main thrust being the empirical
analysis of comparative studies. The results reported here are certainly not definitive but we would
hope to have encouraged others to make use of the methods to increase understanding of the
appropriate interpretation of the measures through further empirical work. Two obvious areas of
possible application would be the investigation of

(1) differences between different subject areas, possibly as a complement to consideration of
differences of impact factors
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(ii) differences over different time periods, either for year-by-year changes or for the
evolutionary distributional change over extending periods of time.

As a final thought, although our examples have been in the familiar context of sources producing
items, there is no reason why the same sort of approach could not be adopted in other informetric
contexts such as citation age distributions. Again, investigation of differences between different
subject areas should be of interest.
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