

# Proceedings Literature as Additional Data Source for Bibliometric Analysis

Wolfgang Glänzel<sup>\*</sup>, <sup>\*\*</sup>, Balázs Schlemmer<sup>\*</sup>, András Schubert<sup>\*\*</sup> and Bart Thijs<sup>\*</sup>

<sup>\*</sup>*Wolfgang.Glanzel@econ.kuleuven.ac.be, Balazs.Schlemmer@econ.kuleuven.ac.be,  
Bart.Thijs@econ.kuleuven.ac.be*

Steunpunt O&O Statistieken, KU Leuven, Dekenstraat 2, B-3000 Leuven (Belgium)

<sup>\*\*</sup>*glaenzw@helka.iif.hu, schuba@helka.iif.hu*

Institute for Research Policy Studies, Hungarian Academy of Sciences, P.O.B. 994, H-1245 Budapest (Hungary)

## Abstract

Scientific meetings have become increasingly important channels for scholarly communication. In several fields of applied and engineering sciences they are – according to the statements of scientists active in those fields – even more important than publishing in periodicals. One objective of this study is to analyse the weight of proceedings literature in all fields of the sciences, social sciences and humanities as well as the use of the *ISI Proceedings<sup>SM</sup>* database as additional data source for bibliometric studies. The second objective is exploring the use of a further important feature of this database, namely, of information about conference location for the analysis of bibliometrically relevant aspects of information flow such as the relative attractivity, the extent of mobility and unidirectional or mutual affinity of countries.

## Introduction

Scientific meetings are important channels for communicating research results. Proceedings literature may thus usefully supplement journal literature as a measurable object of documented scholarly communication in basic and applied sciences. The two forms of literature are not quite independent of each other: Journal papers are often based on and preceded by presentations given at scientific conferences and, on the other hand, journal editors tend more and more to publish selected papers from international or national conferences in dedicated issues of their journals. *Drott* (1995) has studied the role of proceedings literature in scientific communication on the example of the field *Information Science* where he found that proceeding literature is rated much lower than would be expected from studies of other literature (e.g., *Martens* and *Saretzki*, 1993). Above all, scientists in applied and engineering sciences complain that their field is not covered by journal literature in an adequate manner, and that (non-periodical) proceedings literature is of immense importance in scholarly communication of their fields. In the North American academic reward system, specifically promotion and tenure, publication in peer-reviewed journals has always been stressed, yet in some fields, as the data here show, publication in conference proceedings is as or more important. Also these findings have implications for how review committees assess work in different disciplinary cultures.

Unlike in the case of ‘regular’ journal literature, special issues dedicated to conferences as well as non-serial proceedings literature allows the analysis of a kind of mobility of scientists shedding light on many aspects of the relationship among countries, organisations and individual researchers. Data on organisation of and attendance at conferences, therefore, reveal interesting details on the open or closed nature of scientific communities as well as on the infrastructural, intra-scientific and commercial background of organising scientific meetings and also the attraction of attendees from other countries. *Schubert* et al. (1983) have laid the groundwork for cross-national analyses of mutual relationship patterns in attendance of international scientific meetings. *Soderqvist* and *Silverstein* (1994a, 1994b) and later also *Godin* (1998) have studied international flows of knowledge based on scientific meeting data in different science areas. In the present study, the authors try to extend those results to all fields of the sciences, social sciences and humanities by introducing new indicators designed to measure relative attractivity, extent of mobility and mutual affinity of countries.

## Data sources and data processing

The analysis is based on the *ISI Proceedings<sup>SM</sup>* database by the Institute for Scientific Information (Thomson – ISI, Philadelphia, PA, USA). Data were extracted from the 1994-2002 volumes of the *ISI Proceedings<sup>SM</sup>* database of Thomson-ISI. Both the Science & Technology (STP) and the Social

Sciences & Humanities (SSH) editions have been used. In the first part of the study aiming at the analysis of national publication profiles, only documents of the type articles, letters, notes, proceedings and reviews have been selected. Subject classification of publications was based on the field assignment of journals (in which the publications in question appeared) according to the twelve major fields of science and three fields of social sciences and humanities developed in Leuven and Budapest (see, for instance, *Glänzel and Schubert, 2003*).

In the second part, where the international flows of knowledge are analysed, other document types such as meeting abstracts are also taken into consideration. This part is based on the 2002 volumes of the *ISI Proceedings<sup>SM</sup>*.

### Methods and results

The documents were assigned to countries according to the address in the by-line of the paper. Unlike in the period 1991-1993 where at most one correspondence address has been recorded in the database (cf., *Godin, 1998*), address recording practice follows that applied to the *Web of Science<sup>®</sup>* (WoS) from 1994 on. The share of papers without address is of the same low order as that in the WoS. Conferences in the internet are still a marginal phenomenon in 2002; their share in the Proceedings Index is therefore negligible.

Internationally co-authored papers indexed in the 2002 volume have been assigned to each country involved (source country). Duplicate country addresses have been removed. In addition, all papers have been assigned to the country in which the conference was held (location country).

### National and disciplinary coverage

The first part of the study is devoted to the question whether in which fields (and for which countries) proceedings literature plays an important part. In verbal terms the question arises of how far proceedings data bases might be useful as additional input for bibliometric studies. The proceedings database has been split up, namely, the part that is not already covered by the WoS was separated. The comparative analysis was based on three components, non-serial proceedings literature, the total as covered by the ISI Proceedings database, and the WoS.

Table 1 presents the subject profile of the two editions of the *ISI Proceedings<sup>SM</sup>* database as compared with that of the WoS database in the period 1994-2002.

Table 1. Subject profile of the *Web of Science<sup>®</sup>* (W) and the *ISI Proceedings<sup>SM</sup>* (P)  
in the period 1994-2002

| Field       | 1994  |       | 1995  |       | 1996  |       | 1997  |       | 1998  |       | 1999  |       | 2000  |       | 2001  |       | 2002  |       |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|             | W     | P     | W     | P     | W     | P     | W     | P     | W     | P     | W     | P     | W     | P     | W     | P     | W     | P     |
| <b>AGRI</b> | 5.1%  | 10.8% | 5.1%  | 13.3% | 5.0%  | 11.0% | 5.3%  | 9.4%  | 5.5%  | 11.2% | 5.3%  | 12.0% | 5.4%  | 12.0% | 5.5%  | 8.3%  | 5.8%  | 8.4%  |
| <b>BIOL</b> | 8.3%  | 6.3%  | 8.5%  | 6.6%  | 8.6%  | 6.1%  | 9.1%  | 5.0%  | 9.1%  | 5.8%  | 9.1%  | 3.8%  | 9.0%  | 5.6%  | 9.1%  | 3.2%  | 9.2%  | 3.8%  |
| <b>BIOS</b> | 9.2%  | 5.2%  | 9.6%  | 5.9%  | 9.4%  | 3.8%  | 10.1% | 2.5%  | 10.4% | 2.6%  | 10.3% | 2.6%  | 10.1% | 4.2%  | 10.2% | 2.3%  | 9.7%  | 2.4%  |
| <b>BIOM</b> | 6.9%  | 6.4%  | 6.4%  | 6.2%  | 6.7%  | 5.2%  | 6.6%  | 4.0%  | 7.0%  | 6.3%  | 6.8%  | 7.0%  | 6.9%  | 3.7%  | 6.7%  | 4.7%  | 6.7%  | 4.9%  |
| <b>CLI1</b> | 12.2% | 5.6%  | 11.8% | 5.9%  | 11.7% | 4.2%  | 11.7% | 3.7%  | 12.2% | 4.3%  | 12.4% | 3.8%  | 12.2% | 2.7%  | 12.1% | 2.3%  | 11.9% | 3.0%  |
| <b>CLI2</b> | 14.9% | 7.1%  | 15.1% | 9.5%  | 15.2% | 7.5%  | 16.0% | 9.2%  | 16.4% | 8.3%  | 16.5% | 7.7%  | 16.5% | 6.9%  | 16.7% | 4.6%  | 16.4% | 5.5%  |
| <b>NEUR</b> | 4.7%  | 4.3%  | 5.1%  | 2.6%  | 5.2%  | 2.4%  | 5.4%  | 1.9%  | 5.3%  | 2.1%  | 5.3%  | 2.6%  | 5.3%  | 1.9%  | 5.2%  | 1.9%  | 5.2%  | 1.9%  |
| <b>CHEM</b> | 15.6% | 15.5% | 16.3% | 17.7% | 16.7% | 14.6% | 16.5% | 15.9% | 17.3% | 17.5% | 17.4% | 18.5% | 17.0% | 16.8% | 17.8% | 15.4% | 17.8% | 11.9% |
| <b>PHYS</b> | 13.0% | 24.8% | 13.1% | 22.9% | 13.0% | 23.5% | 13.0% | 22.9% | 12.9% | 23.1% | 13.1% | 27.5% | 12.8% | 26.6% | 13.2% | 26.6% | 13.4% | 31.8% |
| <b>GEOS</b> | 4.8%  | 10.9% | 4.9%  | 14.6% | 4.8%  | 15.2% | 4.8%  | 10.9% | 4.8%  | 15.6% | 5.1%  | 14.6% | 5.2%  | 13.9% | 5.2%  | 11.6% | 5.1%  | 12.3% |
| <b>ENGN</b> | 9.4%  | 42.2% | 9.3%  | 43.5% | 9.2%  | 44.3% | 9.0%  | 51.2% | 9.5%  | 49.8% | 9.4%  | 52.0% | 9.3%  | 46.8% | 9.8%  | 61.2% | 9.5%  | 61.4% |
| <b>MATH</b> | 3.1%  | 3.4%  | 3.1%  | 4.4%  | 3.2%  | 3.7%  | 3.3%  | 4.1%  | 3.5%  | 3.8%  | 3.5%  | 4.6%  | 3.6%  | 3.8%  | 3.6%  | 5.0%  | 3.7%  | 5.7%  |
| <b>SOC1</b> | 3.3%  | 4.9%  | 3.3%  | 4.4%  | 3.1%  | 4.6%  | 3.2%  | 4.4%  | 3.4%  | 4.8%  | 3.4%  | 4.2%  | 3.3%  | 4.1%  | 3.3%  | 3.1%  | 3.3%  | 2.5%  |
| <b>SOC2</b> | 3.5%  | 3.9%  | 3.4%  | 4.1%  | 3.6%  | 3.3%  | 3.7%  | 3.6%  | 3.6%  | 3.3%  | 3.5%  | 4.8%  | 3.7%  | 3.4%  | 3.5%  | 2.0%  | 3.3%  | 2.6%  |
| <b>AHUM</b> | 3.6%  | 3.3%  | 3.4%  | 2.5%  | 3.3%  | 2.7%  | 3.3%  | 2.3%  | 3.0%  | 2.0%  | 3.0%  | 2.1%  | 3.2%  | 2.8%  | 3.0%  | 2.4%  | 2.9%  | 1.9%  |

The results completely meet all expectations: Roughly half the papers indexed in the Science & Technology edition were assigned to the field of *engineering*. The share of this field is thus almost five times as high as the corresponding share in the WoS, and this share continuously increases (from 43%

in 1994/95 to 61% in 2001/2002). Physics comes to one quarter of the database, followed by chemistry, geosciences and agriculture & ecology. Life-sciences play a secondary part in this database.

Table 2. Share of proceedings literature in the total publication outputs indexed by the *ISI Proceedings<sup>SM</sup>* and the *Web of Science<sup>®</sup>* databases between 1994 and 2002

| Field       | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <b>AGRI</b> | 27.0% | 34.4% | 28.7% | 23.0% | 25.7% | 24.7% | 22.8% | 17.7% | 21.3% |
| <b>BIOL</b> | 11.5% | 13.5% | 11.5% | 8.4%  | 9.8%  | 5.6%  | 7.7%  | 4.8%  | 7.1%  |
| <b>BIOS</b> | 8.9%  | 11.0% | 6.9%  | 4.0%  | 4.1%  | 3.5%  | 5.2%  | 3.1%  | 4.4%  |
| <b>BIOM</b> | 13.9% | 16.3% | 12.4% | 9.1%  | 13.3% | 13.0% | 6.7%  | 9.2%  | 12.1% |
| <b>CLI1</b> | 7.4%  | 9.1%  | 6.2%  | 5.0%  | 5.6%  | 4.2%  | 2.9%  | 2.6%  | 4.5%  |
| <b>CLI2</b> | 7.6%  | 11.1% | 8.3%  | 8.8%  | 7.8%  | 6.3%  | 5.3%  | 3.8%  | 5.9%  |
| <b>NEUR</b> | 13.6% | 9.1%  | 7.7%  | 5.5%  | 6.3%  | 6.8%  | 4.5%  | 4.9%  | 6.3%  |
| <b>CHEM</b> | 14.8% | 17.9% | 13.8% | 13.9% | 14.6% | 13.4% | 11.6% | 11.0% | 11.1% |
| <b>PHYS</b> | 24.8% | 26.0% | 24.8% | 22.8% | 23.2% | 23.3% | 21.6% | 22.4% | 30.8% |
| <b>GEOS</b> | 28.4% | 37.6% | 36.7% | 27.7% | 35.6% | 29.3% | 26.4% | 24.3% | 31.1% |
| <b>ENGN</b> | 43.8% | 48.3% | 46.7% | 48.7% | 46.9% | 44.4% | 40.1% | 47.3% | 54.7% |
| <b>MATH</b> | 15.8% | 22.4% | 17.1% | 17.3% | 15.4% | 16.3% | 12.5% | 16.8% | 22.5% |
| <b>SOC1</b> | 20.4% | 21.2% | 21.1% | 18.6% | 19.3% | 15.2% | 14.1% | 11.9% | 12.4% |
| <b>SOC2</b> | 16.4% | 19.2% | 14.2% | 14.0% | 13.3% | 16.5% | 11.0% | 7.6%  | 12.8% |
| <b>AHUM</b> | 13.6% | 12.9% | 12.8% | 10.6% | 10.0% | 9.0%  | 10.3% | 10.4% | 10.9% |

Table 2 presents the share of proceedings literature in the total publication outputs indexed by both the *ISI Proceedings<sup>SM</sup>* and the *Web of Science<sup>®</sup>* databases in the period 1994–2002. About one half of engineering literature, about one third of geosciences and more than 20% of physics, agriculture and mathematics is covered by the *ISI Proceedings<sup>SM</sup>*. The *ISI Proceedings<sup>SM</sup>* database thus proved to have a complementary coverage to the WoS, and thus to form a valuable additional data source above all for bibliometrics in the applied and technical sciences.

Table 3 presents the national representation of the *ISI Proceedings<sup>SM</sup>*. Here coverage is restricted to the STP Edition. For comparison, the national representation of the *Science Citation Index Expanded* (SCIE) is added. Countries are ranked on basis of their total publication output in the two databases in the period 1994–2002. The 35 most active countries in the nine-year period have been selected. In order to visualise trends, the period has been split up into three sub-periods of three years each.

Although the national shares in the world total is similar to what was expected on basis of the SCIE, the large share of Chinese proceedings papers is worth mentioning. The evolution of China's share in the STP is spectacular: Its share has more than doubled during the period of nine years and China holds already rank four behind USA, Japan and Germany in 2000–2002. Although the USA still plays the central part in both the SCIE and STP database, their share decreases and this trend is quite dramatic in the proceedings literature. Canada follows this trend. The stable share of France and UK in the SCIE database is contrasted by their shrinking share in the STP. The only European countries with pronounced growth patterns are Spain and Poland; this evolution applies to both the SCIE and STP (cf. Table 3).

Table 3. National representation in the STP Edition and the SCIE (1994-2002)

| Country               | SCIE+STP  |      | SCIE    |         |         | STP     |         |         |
|-----------------------|-----------|------|---------|---------|---------|---------|---------|---------|
|                       | 1994-2002 |      | 1994-96 | 1997-99 | 2000-02 | 1994-96 | 1997-99 | 2000-02 |
|                       | Share     | Rank | Share   | Share   | Share   | Share   | Share   | Share   |
| <b>USA</b>            | 31.8%     | 1    | 33.1%   | 31.6%   | 30.8%   | 35.7%   | 32.2%   | 27.6%   |
| <b>Japan</b>          | 9.0%      | 2    | 8.7%    | 9.3%    | 9.5%    | 7.6%    | 8.3%    | 8.8%    |
| <b>UK</b>             | 8.5%      | 3    | 9.0%    | 9.0%    | 8.9%    | 6.8%    | 5.6%    | 5.7%    |
| <b>Germany</b>        | 8.1%      | 4    | 7.7%    | 8.6%    | 8.6%    | 6.8%    | 6.8%    | 6.6%    |
| <b>France</b>         | 6.0%      | 5    | 6.1%    | 6.4%    | 6.2%    | 4.9%    | 4.5%    | 4.2%    |
| <b>Canada</b>         | 4.1%      | 6    | 4.5%    | 4.2%    | 4.1%    | 3.7%    | 3.1%    | 3.1%    |
| <b>Italy</b>          | 4.0%      | 7    | 3.8%    | 4.1%    | 4.3%    | 3.9%    | 3.6%    | 3.7%    |
| <b>Russia</b>         | 3.4%      | 8    | 3.8%    | 3.6%    | 3.4%    | 2.2%    | 2.5%    | 2.6%    |
| <b>PR China</b>       | 3.1%      | 9    | 1.7%    | 2.6%    | 4.4%    | 2.6%    | 3.4%    | 6.0%    |
| <b>Spain</b>          | 2.6%      | 10   | 2.3%    | 2.8%    | 3.1%    | 1.2%    | 1.5%    | 1.7%    |
| <b>Australia</b>      | 2.5%      | 11   | 2.4%    | 2.6%    | 2.7%    | 2.0%    | 2.1%    | 2.0%    |
| <b>Netherlands</b>    | 2.3%      | 12   | 2.4%    | 2.4%    | 2.4%    | 2.0%    | 1.8%    | 1.7%    |
| <b>India</b>          | 2.1%      | 13   | 2.2%    | 2.2%    | 2.4%    | 1.0%    | 1.1%    | 1.1%    |
| <b>Sweden</b>         | 1.8%      | 14   | 1.8%    | 1.9%    | 1.9%    | 1.1%    | 1.1%    | 1.1%    |
| <b>Switzerland</b>    | 1.7%      | 15   | 1.6%    | 1.8%    | 1.8%    | 1.2%    | 1.2%    | 1.1%    |
| <b>South Korea</b>    | 1.4%      | 16   | 0.8%    | 1.4%    | 2.0%    | 0.9%    | 1.6%    | 2.0%    |
| <b>Belgium</b>        | 1.2%      | 17   | 1.2%    | 1.3%    | 1.3%    | 0.9%    | 0.9%    | 1.0%    |
| <b>Poland</b>         | 1.2%      | 18   | 1.0%    | 1.2%    | 1.4%    | 0.9%    | 1.1%    | 1.3%    |
| <b>Taiwan</b>         | 1.2%      | 19   | 1.0%    | 1.2%    | 1.4%    | 0.8%    | 1.1%    | 1.3%    |
| <b>Brazil</b>         | 1.1%      | 20   | 0.8%    | 1.2%    | 1.5%    | 0.6%    | 1.1%    | 1.1%    |
| <b>Israel</b>         | 1.1%      | 21   | 1.1%    | 1.2%    | 1.2%    | 0.6%    | 0.7%    | 0.6%    |
| <b>Denmark</b>        | 0.9%      | 22   | 0.9%    | 1.0%    | 1.0%    | 0.6%    | 0.5%    | 0.5%    |
| <b>Finland</b>        | 0.9%      | 23   | 0.8%    | 0.9%    | 1.0%    | 0.6%    | 0.7%    | 0.8%    |
| <b>Austria</b>        | 0.8%      | 24   | 0.8%    | 0.9%    | 1.0%    | 0.7%    | 0.7%    | 0.7%    |
| <b>Turkey</b>         | 0.6%      | 25   | 0.4%    | 0.6%    | 0.9%    | 0.4%    | 0.4%    | 0.4%    |
| <b>Greece</b>         | 0.6%      | 26   | 0.5%    | 0.6%    | 0.7%    | 0.5%    | 0.6%    | 0.7%    |
| <b>Norway</b>         | 0.6%      | 27   | 0.6%    | 0.6%    | 0.6%    | 0.5%    | 0.5%    | 0.4%    |
| <b>Ukraine</b>        | 0.6%      | 28   | 0.6%    | 0.6%    | 0.5%    | 0.4%    | 0.6%    | 0.6%    |
| <b>Mexico</b>         | 0.5%      | 29   | 0.4%    | 0.5%    | 0.6%    | 0.4%    | 0.5%    | 0.6%    |
| <b>Czech Republic</b> | 0.5%      | 30   | 0.5%    | 0.5%    | 0.6%    | 0.3%    | 0.4%    | 0.6%    |
| <b>New Zealand</b>    | 0.5%      | 31   | 0.5%    | 0.5%    | 0.5%    | 0.4%    | 0.3%    | 0.4%    |
| <b>Hungary</b>        | 0.5%      | 32   | 0.5%    | 0.5%    | 0.5%    | 0.4%    | 0.4%    | 0.4%    |
| <b>South Africa</b>   | 0.5%      | 33   | 0.5%    | 0.5%    | 0.5%    | 0.3%    | 0.4%    | 0.3%    |
| <b>Argentina</b>      | 0.5%      | 34   | 0.4%    | 0.5%    | 0.6%    | 0.1%    | 0.2%    | 0.2%    |
| <b>Singapore</b>      | 0.4%      | 35   | 0.3%    | 0.4%    | 0.5%    | 0.3%    | 0.5%    | 0.8%    |

#### Bibliometric transactions as reflected by international conference proceedings

The second part is concerned with international information flows as reflected by scientific meetings.

Conferences have been assigned to the country where the conference took place (source country). Data based on source and location countries have been organised in a cross-national transaction matrix, the main diagonal of which contains contributions from the location country itself. The off-diagonal elements thus represent the pure transactions among different countries. Three bibliometric measures recently introduced by Glänzel et al. (2005) have been applied: 1. the “import/export” relation measuring the *Relative attractivity (RA)* of a country, 2. the *Extent of self-transactions (EST)* reflecting the preference of “staying at home” and 3. a measure designed to express unidirectional and mutual affinity of national scientific communities. The total of national transactions, particularly the number of papers a country contributes at all conferences and the number

of all papers at conferences organised by the country, is supplemented by the number of self-transactions and the values of the first two variables in Table 4.

The central role of the USA in organising conferences and in contributing to scientific meetings has already been reported by *Godin* (1998) for the period 1991–1993. One decade later the USA plays still the most important part in the world; 27.5% of all proceedings papers have an American author in 2002 and 35.3% of all papers indexed in the proceedings database were presented at conferences held in the USA. The share of US-authored papers is thus somewhat lower than in the WoS. Also the relatively low share of British papers is striking. On the other hand, the high activity in China was somewhat unexpected. The two variables, *Relative attractivity* and *Extent of self-transactions* provide insight on two important aspects of bibliometric transactions. In order to be able to define these variables in an accurate manner, we have first to introduce some mathematical rudiments concerning the transaction matrix.

The elements  $p_{ij}$  of transaction matrix  $\mathbf{T} = \{p_{ij}\}$  denote the number of proceedings papers from country  $i$  in the proceedings of a conference held in country  $j$ . The total of out-transactions of country  $i$  can then be expressed as  $\tau_{i*} = \sum_j p_{ij}$ , that of in-transactions of country  $j$  correspondingly as  $\tau_{*j} = \sum_i p_{ij}$ . Self-transactions  $p_{ii}$  of country  $i$  will be denoted by  $\sigma_i$ . The *Relative attractivity* (*RA*) of a country is based on the off-diagonal elements of the transaction matrix. All self-transactions are thus eliminated. This indicator is defined in the following way.

$$RA_i = \frac{\tau_{i*} - \sigma_i}{\tau_{i*} + \sigma_i},$$

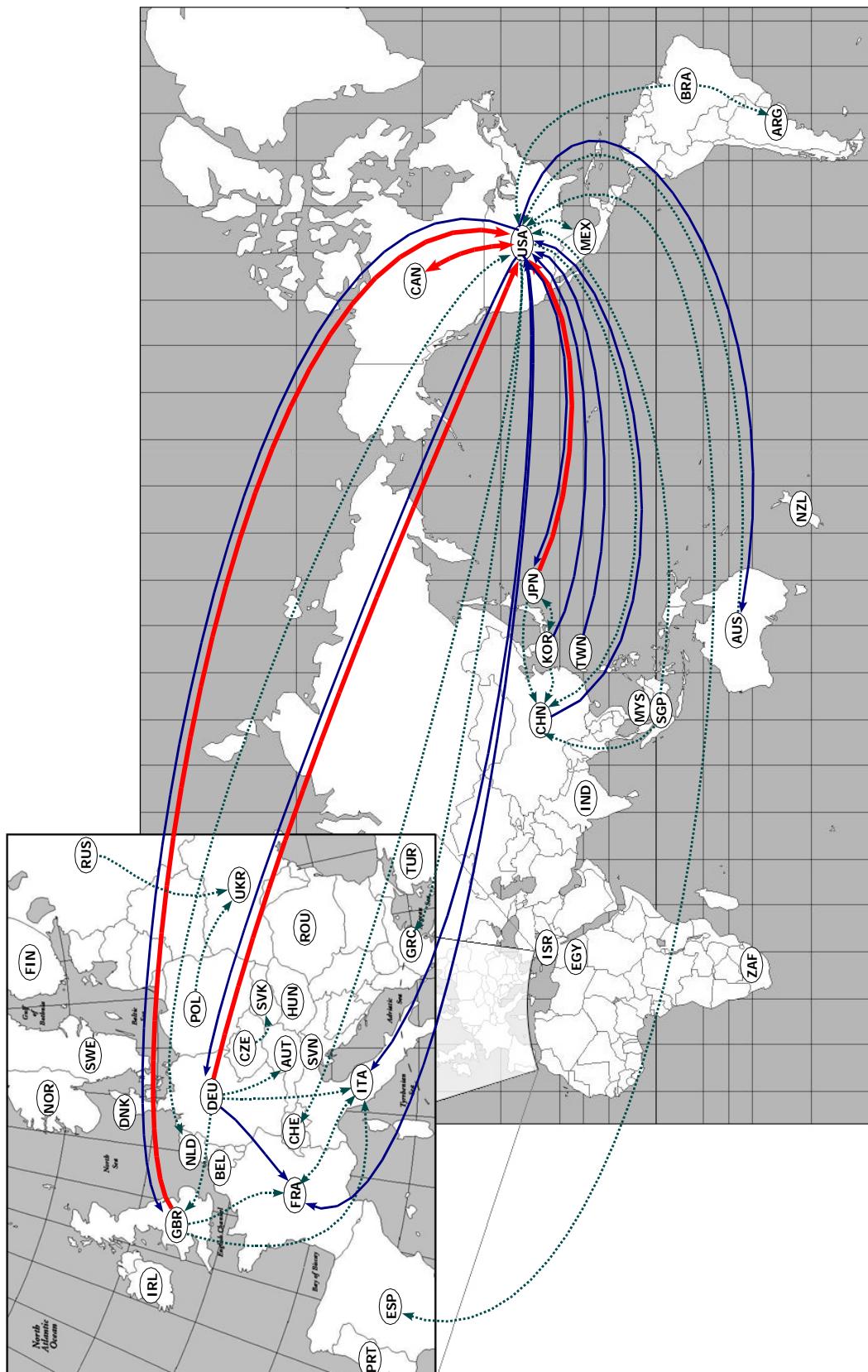
where  $i$  is a given country. The neutral value is 1.0.  $RA_i > 1$  ( $RA_i < 1$ ) means that relatively more (less) papers are attracted than the country contributes abroad.

The *Extent of self-transactions* (*EST*) is expressed through the relation of self-transactions with all in/out-transaction on basis of Salton's measure, namely,

$$EST_i = \frac{\sigma_i}{\sqrt{\tau_{i*} \cdot \tau_{*i}}}.$$

$EST_i$  takes values in the interval  $[0, 1]$ ;  $EST_i = 1$  means that a country only contributes to its own conferences,  $EST_i = 0$  means that the country only contributes abroad. These two extreme values will in practice hardly be observed.

The first observation concerning these two variables is utmost striking: In/out-transactions and the preference of staying at home are almost uncorrelated variables; the correlation coefficient on basis of the 42 selected countries amounts to  $r = 0.097$ . Since the random variable  $t = \sqrt{n-2} \frac{r}{\sqrt{1-r^2}}$  has


a *Student distribution* with parameter  $n-2$ , where  $n$  is the sample size, i.e., the number of countries and  $r$  is the correlation coefficient and the actual value  $t = 0.617$  does not exceed the corresponding critical values  $t_{40,*} = [1.303, 2.201]$  at any reasonable confidence level ( $c_p = [0.900, 0.975]$ ) we can conclude that the two variables *Relative attractivity* and *Extent of self-transactions* can be considered independent, indeed. The two variables can thus be used to completely describe national transaction patterns in the context of proceedings literature.

The analysis of the relative attractivity measure *RA* clearly shows that several factors are simultaneously influencing attractivity thus creating a complex situation. Economic, intra-scientific, geopolitical and touristic-commercial factors are obviously among those aspects playing an important part in organising conferences and attracting contributions from abroad. Greece, Hungary and Turkey have the highest relative attractivity ( $RA > 2$ ). Each paper these countries contribute abroad attracts on an average 2–3 papers from other countries at their conferences. Since the data are based on all fields combined, this effect can hardly be explained with intra-scientific and geopolitical reasons alone. The high *RA* value of the USA ranking fourth is quite plausible; America is a scientific super-power, and forms the centre of gravity in practically all science fields. On the other hand, countries like Argentina, Romania, Norway, Korea and Russia contribute about 3 papers abroad to attract one foreign at their conferences. Again, there is no recognisable intra-scientific and geopolitical reason in the background of this pattern.

Table 4. Indicator values characterising national transactions at international scientific meetings

| Country        | Transactions        |                    | $\sigma$ | Relative attractivity |       | Extent of ST |       |
|----------------|---------------------|--------------------|----------|-----------------------|-------|--------------|-------|
|                | Out ( $\tau_{i*}$ ) | In ( $\tau_{i*}$ ) |          | Rank                  | Value | Rank         | Value |
| Argentina      | 925                 | 396                | 119      | 38                    | 0.34  | 25           | 19.7% |
| Australia      | 5450                | 6887               | 1704     | 14                    | 1.38  | 15           | 27.8% |
| Austria        | 2228                | 3284               | 279      | 8                     | 1.54  | 39           | 10.3% |
| Belgium        | 3057                | 1812               | 269      | 30                    | 0.55  | 36           | 11.4% |
| Brazil         | 3535                | 2223               | 957      | 32                    | 0.49  | 10           | 34.1% |
| Canada         | 8734                | 12125              | 2211     | 10                    | 1.52  | 23           | 21.5% |
| Czech Republic | 1817                | 2375               | 384      | 13                    | 1.39  | 27           | 18.5% |
| Denmark        | 1737                | 1446               | 120      | 25                    | 0.82  | 42           | 7.6%  |
| Egypt          | 565                 | 283                | 129      | 37                    | 0.35  | 11           | 32.3% |
| Finland        | 2154                | 1660               | 199      | 26                    | 0.75  | 38           | 10.5% |
| France         | 13869               | 15641              | 3532     | 18                    | 1.17  | 18           | 24.0% |
| Germany        | 20516               | 14420              | 4801     | 29                    | 0.61  | 14           | 27.9% |
| Greece         | 1931                | 4590               | 675      | 1                     | 3.12  | 20           | 22.7% |
| Hungary        | 1309                | 3171               | 268      | 2                     | 2.79  | 32           | 13.2% |
| India          | 2665                | 1898               | 972      | 31                    | 0.55  | 4            | 43.2% |
| Ireland        | 805                 | 1133               | 110      | 11                    | 1.47  | 35           | 11.5% |
| Israel         | 2027                | 874                | 202      | 36                    | 0.37  | 31           | 15.2% |
| Italy          | 11331               | 12284              | 3099     | 19                    | 1.12  | 17           | 26.3% |
| Japan          | 25301               | 14423              | 7606     | 33                    | 0.39  | 7            | 39.8% |
| Korea          | 5852                | 2369               | 812      | 41                    | 0.31  | 22           | 21.8% |
| Malaysia       | 543                 | 651                | 282      | 12                    | 1.41  | 3            | 47.4% |
| Mexico         | 1584                | 2192               | 424      | 9                     | 1.52  | 19           | 22.8% |
| Netherlands    | 5248                | 4620               | 576      | 24                    | 0.87  | 34           | 11.7% |
| New Zealand    | 1068                | 1132               | 393      | 20                    | 1.09  | 8            | 35.7% |
| Norway         | 1067                | 398                | 77       | 40                    | 0.32  | 33           | 11.8% |
| PR China       | 14035               | 13445              | 8387     | 23                    | 0.90  | 1            | 61.1% |
| Poland         | 4387                | 5042               | 1610     | 16                    | 1.24  | 9            | 34.2% |
| Portugal       | 1497                | 2307               | 178      | 7                     | 1.61  | 41           | 9.6%  |
| Romania        | 865                 | 387                | 152      | 39                    | 0.33  | 16           | 26.3% |
| Russia         | 7579                | 3623               | 2254     | 42                    | 0.26  | 5            | 43.0% |
| Singapore      | 1893                | 1756               | 345      | 22                    | 0.91  | 26           | 18.9% |
| Slovakia       | 573                 | 839                | 223      | 6                     | 1.76  | 12           | 32.2% |
| Slovenia       | 676                 | 794                | 120      | 17                    | 1.21  | 30           | 16.4% |
| South Africa   | 937                 | 1459               | 264      | 5                     | 1.78  | 21           | 22.6% |
| Spain          | 5781                | 7461               | 1381     | 15                    | 1.38  | 24           | 21.0% |
| Sweden         | 3517                | 2555               | 291      | 28                    | 0.70  | 40           | 9.7%  |
| Switzerland    | 3793                | 3951               | 440      | 21                    | 1.05  | 37           | 11.4% |
| Taiwan         | 3275                | 1502               | 395      | 34                    | 0.38  | 28           | 17.8% |
| Turkey         | 1241                | 2616               | 303      | 3                     | 2.47  | 29           | 16.8% |
| UK             | 16765               | 13060              | 4296     | 27                    | 0.70  | 13           | 29.0% |
| Ukraine        | 1620                | 926                | 511      | 35                    | 0.37  | 6            | 41.7% |
| USA            | 76557               | 98110              | 51594    | 4                     | 1.86  | 2            | 59.5% |

Also the second indicator reflects strong national characteristics but this time with interesting geopolitical similarities. Also there seems to be a certain size-dependence since the big countries tend to appear rather on top (USA, China, Russia, UK, Germany), but geographical similarities are conspicuous as, for instance, the very low share of self-transactions in the Nordic countries, low shares also in Austria and Switzerland, or – by contrast – the high shares of self-transactions in Russia and Ukraine. The range of the extent of self-transactions is huge; about 60% according to Salton's measure in China and the USA but only 10% or even less in Portugal and Scandinavia.



:: map source: Cartographic Research Lab, University of Alabama ::

Figure 1. 'Scientopographical' map representing unidirectional and mutual affinity of national scientific communities based on proceedings data in 2002  
(dotted line  $\geq 7.5\%$ , solid line  $\geq 10\%$ , thick line  $\geq 15\%$ )

The analysis of the transaction matrix of the most active 42 countries is based on Salton's measure using the following formula:

$$r_{ij} = \frac{p_{ij}}{\sqrt{(\tau_{i^*} - \sigma_i) \cdot (\tau_{*j} - \sigma_j)}}.$$

As expected from related studies (e.g., Schubert et al., 1983, Glänzel, 2001), national affinity shows non-symmetric patterns. Links are, of course, much stronger than in the case of co-authorship patterns. The results are visualised in a 'scientopographical' map (see Figure 1). We have used three zones of strengths:  $0.075 \leq r_{ij} < 0.100$  (medium),  $0.100 \leq r_{ij} < 0.150$  (strong) and  $0.150 \leq r_{ij}$  (very strong). If we compare these thresholds with those used in bibliometric studies of the network of internationally co-authored publications, links in the network of contributions to conferences are distinctly stronger. However, this effect lies in the nature of (international) scientific meetings; their objective is to promote the exchange of scientific information through the attendance and presentation at conferences and finally through contributing to the proceedings.

The central role of the USA is obvious (cf. Figure 1). Extremely strong links are established with Canada (mutual relationship) and with three other scientific Great Powers, UK, Germany and Japan as attractors. However, the USA plays this part globally; many medium-strong links connect America with countries in Europe, Asia and Latin-America. Both important local and global centres in Europe are UK, France, Germany and Italy. Austria seems to be attractive not only to its northern neighbour Germany but also to the USA. In Asia a new Great Power is arising: China seems to evolve to a new centre attracting contributions above all from the southern and western neighbourhood, but China is also strongly contributing to US conferences. China has established somewhat weaker links ( $0.05 \leq r_{ij} < 0.075$ ) also with Australia and Canada.

Beyond mutual relationships, strong asymmetries in bilateral links can also be found. The unidirectional links of Taiwan and South Korea with USA might serve just as examples. The comparison of the above results with those of Glänzel (2001) and Glänzel and Schubert (2004) clearly show that despite certain similarities between scientific co-publication patterns and 'conference transactions', national affinities are more pronounced in the latter ones and other factors are in part influencing transactions here.

## Conclusions

The results of the first part of the paper of the study characterise the *ISI Proceedings<sup>SM</sup>* – especially in the applied and technical sciences, but also in the social sciences and humanities – as valuable supplement to the *Web of Science* database. The analysis conducted in the second part yields results that are, in part, somewhat unexpected. Above all, several medium-sized countries show interesting attractivity patterns. As mentioned above, certain similarity with collaboration patterns could be found. Nevertheless, contributions at international conferences are non-symmetric by nature and unidirectional affinities and strength of relationships are, of course, much more pronounced in the case of international meetings. The comparison of the present findings with those observed in co-publication studies as well as the analysis of temporal patterns will be the task of future research.

## Acknowledgement

The authors wish to thank the referees for their careful reading of the manuscript and for the comments on the role of journal and proceedings literature in different disciplinary cultures.

## References

- Drott MC (1995), Re-examining the role of conference papers in scholarly communication, *JASIS* 46 (4), 299-305.
- Glänzel W (2001), National characteristics in international scientific co-authorship, *Scientometrics*, 51 (1), 69-115.
- Glänzel W & Schubert A (2003), A new classification scheme of science fields and subfields designed for bibliometric evaluation purposes, *Scientometrics*, 56, 357-367.

Glänzel W, Schlemmer B & Schubert A (2005), A transactional matrix analysis of national attendance on international scientific meetings, Paper to be presented at the 2005 Annual Conference of the Canadian Association for Information Science (CAIS), to be held in London, Ontario (Canada) on June 2-4, 2005.

Godin B (1998), Measuring knowledge flows between countries: The use of scientific meeting data, *Scientometrics* 42 (3), 313-323.

Martens B & Saretzki T (1993), Conferences and courses on biotechnology - describing scientific communication by exploratory methods, *Scientometrics*, 27 (3), 237-260.

Schubert A, Zsindely S & Braun T (1983), Scientometric analysis of attendance at international scientific meetings, *Scientometrics*, 5 (3), 177-187.

Soderqvist T & Silverstein AM (1994a), Studying leadership and subdisciplinary structure of scientific disciplines - cluster-analysis of participation in scientific meetings, *Scientometrics*, 30 (1), 243-258.

Soderqvist T & Silverstein AM (1994b), Participation in scientific meetings - a new prosopographical approach to the disciplinary history of science - the case of immunology, 1951-72, *Social Studies of Science*, 24 (3), 513-548.

## Appendix

### Key to field abbreviations and subject codes

| Abbreviation | Code | Subject Field                                                                    |
|--------------|------|----------------------------------------------------------------------------------|
| AGRI         | A    | <b>Agriculture &amp; Environment</b>                                             |
| BIOL         | Z    | <b>Biology (Organismic &amp; Supraorganismic Level)</b>                          |
| BIOS         | B    | <b>Biosciences (General, Cellular &amp; Subcellular Biology; Genetics)</b>       |
| BIOM         | R    | <b>Biomedical Research</b>                                                       |
| CLI1         | I    | <b>Clinical and Experimental Medicine I (General &amp; Internal Medicine)</b>    |
| CLI2         | M    | <b>Clinical and Experimental Medicine II (Non-Internal Medicine Specialties)</b> |
| NEUR         | N    | <b>Neuroscience &amp; Behaviour</b>                                              |
| CHEM         | C    | <b>Chemistry</b>                                                                 |
| PHYS         | P    | <b>Physics</b>                                                                   |
| GEOS         | G    | <b>Geosciences &amp; Space Sciences</b>                                          |
| ENGN         | E    | <b>Engineering</b>                                                               |
| MATH         | H    | <b>Mathematics</b>                                                               |
| <b>SOC1</b>  | S    | Social Sciences I (General, Regional & Community Issues)                         |
| <b>SOC2</b>  | O    | Social Sciences II (Economical & Political Issues)                               |
| AHUM         | U    | Arts & Humanities                                                                |