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Introduction

The idea that graph theory would be useful in co-
word analysis was suggested to us by social network
analysis, where both graph theory and matrix
operations have been widely used (Wasserman &
Faust, 1999; Degenne & Forsé, 2000). In co-word
analysis tradition, Courtial (1986) had started to
explain the co-word clusters in terms of graphs.
However, he did not take this idea to its logical next
step, which we will attempt here. We distinguish
two analytical units: clusters and the network of
clusters. In the network each cluster represents a
node. In addition, we will consider each cluster as a
"super vertex" (according to the "reduced model
approach" in Everett & Borgatti, 1999)

Co-word Analysis Components

Recall the main components of the standard co-word
analysis (cf. Callon et al. 1993, c. VII). The input
dataset in co-word analysis is a matrix D (n, m)
where n is the number of documents, and m the
number of keywords. From this matrix two other
matrices are derived, initially a matrix of occurrence
of the keywords (columns) in the document
collection (rows), and then a co-occurrence matrix
making it possible to constitute pairs of terms (or
dyads). A normalised weight is attributed to the co-
word associations. This is calculated by an
association coefficient. In this case, it is called
"equivalence coefficient" (Michelet, 1988) and
defined as:
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of co-occurrences of words i and j, and C() is the
total number of occurrences of the word i. The huge
normalised and weighted co-occurrence network is
submitted to a cluster analysis with the objective to
constitute readable sub-sets (or clusters). The
clusters are then disposed on a map, which
essentially is a bi-dimensional plan. The members of
a co-word cluster are also normalised weighted
elements. For each internal or external item a of the
cluster CI/ we calculate this weight w as follows:
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where m¢; = the number of its internal and external
terms, n¢y, = the number of its internal associations,
ncex = the number of its external associations, kc/(a)
= the number of occurrences of internal or external
term a (a = 1, mg) in the internal or external
associations of CI. The term with most weight serves
to label clusters.

Using Graph Theory

A graph G consists of two sets of information: a set
of nodes, N = {ny, n, ..., ny}, and a set of undirected
relations, R = {ry, ra, ..., rz} between pair of nodes,
denoted G (N,R). A weighted graph, denoted by Gy
(N, R, W), consists of three sets of information: a set
of nodes, N = {ny, n, ..., ny}, a set of relations, R =
{r, ra, ..., rr}, and a set of weights, W= {wy, wy, ...,
wg}, attached to the relations. A directed graph or
digraph, Gp (N, R), consists of two sets of
information: a set of nodes, N = {n, ny, ..., ny}, and
a set of directed relations (or arcs), R = {ry, r, ...,
rg} between pairs of nodes. Each arc is an ordered
pair of distinct nodes, 7, = <n;, n>. The arc <n;, n>
is directed from n; (the origin or sender) to #; (the
terminus or receiver).

Co-word clusters are considered as graphs, G (N,R),
because the intra-cluster relations between two
internal terms (internal associations) constitute non-
directional relations. We use the weighted graphs,
Gw (N, R, W), for representing co-word clusters,
since cluster relations always are valued by a
normalised weight. Following this, we use a directed
graphs, Gp (N, R), and we then propose the weighted
directed graphs as a model for representing inter-
cluster relations (external associations) between two
clusters (in the network of clusters), since the
external associations can be analysed like sending or
receiving relations between two clusters. This is a
consequence of the clustering algorithm that we
applied (cf. Grivel et al., 1995).



Types of Relations between Clusters in the
Network

The external associations can be analysed by pairs of
clusters and the possible arcs between them. The
classes of ties between the pairs of clusters can be
null, asymmetric, and mutual. A pair of clusters (i.e.
a dyad) is null, that is, when neither arc is present,
when neither of the arcs <Cl;, Cl> nor <CI;, Cl> is
contained in the set of arcs. An asymmetric pair of
clusters has an arc between the two clusters going in
one direction or the other, but not both, that is, one
of the arcs <Cl;, Cl> or <CI;, CI>, but not both, is
contained in the set of arcs. Asymmetric pairs of
clusters are represented by one-way arcs, <CIl; —
Cl> or <Cl; = Cl>. Mutual or reciprocal pairs of
clusters have two arcs between the nodes
representing them, one going in one direction and
the other going in the opposite direction. Both arcs
<Cl;, Cl> and <CI;, Cl> are contained in the set of
arcs. The arc with a double-headed arrow between
two nodes indicates a mutual pair of clusters, <Cl;
<> Cl> (cf. Wasserman & Faust, 1999, p.124).

Types of Clusters in the Network

According to in- and out-degrees, we can distinguish
four types of nodes in a directed graph. We can use
this information for analysing the network of
clusters in terms of isolate nodes (if diy.gegree (1) =
out-degree (1;) = 0), transmitter nodes (if diy-gegree (1;) =
0 and dourdegree (1;) > 0), receiver nodes (if dj,.
degree(ni) >0 and dout»degree(ni) = 0): and carrier nodes
(lf din-degree(”i) >0 and dout-degree(ni) > O) Transmitter
is the node, which only has arcs originating from it;
receiver is the node that only has arcs terminating at
it; carrier is the node that has arcs both to and from it
(cf. Wasserman & Faust, 1999, p.128).

Conclusion

We try in this article to translate the standard co-
word analysis in graph language, following the
example of the social network analysis. Graph
theory provides us the analytical tools and indicators
for analysing co-word clusters as non-directional
weighted graphs. In contrast, the network of clusters
is defined as a directional weighted graph.

A real co-word analysis application on a
bibliographic dataset has been used for illustrating
this translation. We have used as example a data set
of 228 publications indexed by 164 keywords on
rough set theory, and its applications in the field of
information science, through 1999-2004. This
dataset was collected from PASCAL database.

The issue that remains to be considered is the
alternative to apply directly a graph algorithm to the
weighted co-occurrence matrix. Thus, a clustering
process will be done on the graph structure that has
been generated from the weighted co-occurrence
matrix. This is in progress using CPCL algorithm
introduced by Ibekwe-SanJuan (1998), and revisited
by Berry et al. (2004). We will demonstrate in this
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case that the model only is an undirected weighted
graph in conformity with the non-directional co-
occurrence relation between keywords.

We have not yet revisited the cluster centrality and
density structural properties, nor have we addressed
the issue of the different class of centrality (degree,
closeness, and betweenness), and density (in a
graph, a directed graph or a weighted graph). We
will address these issues in a following article.
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Figure 1: The network of clusters represented by a
directed weighted graph
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