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Introduction 
The idea that graph theory would be useful in co-
word analysis was suggested to us by social network 
analysis, where both graph theory and matrix 
operations have been widely used (Wasserman & 
Faust, 1999; Degenne & Forsé, 2000). In co-word 
analysis tradition, Courtial (1986) had started to 
explain the co-word clusters in terms of graphs. 
However, he did not take this idea to its logical next 
step, which we will attempt here. We distinguish 
two analytical units: clusters and the network of 
clusters. In the network each cluster represents a 
node. In addition, we will consider each cluster as a 
"super vertex" (according to the "reduced model 
approach" in Everett & Borgatti, 1999)  
 
Co-word Analysis Components 
Recall the main components of the standard co-word 
analysis (cf. Callon et al. 1993, c. VII). The input 
dataset in co-word analysis is a matrix D (n, m) 
where n is the number of documents, and m the 
number of keywords. From this matrix two other 
matrices are derived, initially a matrix of occurrence 
of the keywords (columns) in the document 
collection (rows), and then a co-occurrence matrix 
making it possible to constitute pairs of terms (or 
dyads). A normalised weight is attributed to the co-
word associations. This is calculated by an 
association coefficient. In this case, it is called 
"equivalence coefficient" (Michelet, 1988) and 
defined as: 
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of co-occurrences of words i and j, and C(i) is the 
total number of occurrences of the word i. The huge 
normalised and weighted co-occurrence network is 
submitted to a cluster analysis with the objective to 
constitute readable sub-sets (or clusters). The 
clusters are then disposed on a map, which 
essentially is a bi-dimensional plan. The members of 
a co-word cluster are also normalised weighted 
elements. For each internal or external item a of the 
cluster Cl we calculate this weight w as follows:  
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with 0 ( )Cl Clin Clexk a n n< ≤ + , and 0 ( ) 1Clw a< ≤ , 
where mCl = the number of its internal and external 
terms, nClin = the number of its internal associations, 
nClex = the number of its external associations, kCl(a) 
= the number of occurrences of internal or external 
term a (a = 1, mCl) in the internal or external 
associations of Cl. The term with most weight serves 
to label clusters. 
 
Using Graph Theory 
A graph G consists of two sets of information: a set 
of nodes, N = {n1, n2, ..., nN}, and a set of undirected 
relations, R = {r1, r2, …, rR} between pair of nodes, 
denoted G (N,R). A weighted graph, denoted by GW 
(N, R, W), consists of three sets of information: a set 
of nodes, N = {n1, n2, …, nN}, a set of relations, R = 
{r1, r2, …, rR}, and a set of weights, W = {w1, w2, …, 
wR}, attached to the relations. A directed graph or 
digraph, GD (N, R), consists of two sets of 
information: a set of nodes, N = {n1, n2, …, nN}, and 
a set of directed relations (or arcs), R = {r1, r2, …, 
rR} between pairs of nodes. Each arc is an ordered 
pair of distinct nodes, rk = <ni, nj>. The arc <ni, nj> 
is directed from ni (the origin or sender) to nj (the 
terminus or receiver). 
Co-word clusters are considered as graphs, G (N,R), 
because the intra-cluster relations between two 
internal terms (internal associations) constitute non-
directional relations. We use the weighted graphs, 
GW (N, R, W), for representing co-word clusters, 
since cluster relations always are valued by a 
normalised weight. Following this, we use a directed 
graphs, GD (N, R), and we then propose the weighted 
directed graphs as a model for representing inter-
cluster relations (external associations) between two 
clusters (in the network of clusters), since the 
external associations can be analysed like sending or 
receiving relations between two clusters. This is a 
consequence of the clustering algorithm that we 
applied (cf. Grivel et al., 1995). 
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Types of Relations between Clusters in the 
Network 
The external associations can be analysed by pairs of 
clusters and the possible arcs between them. The 
classes of ties between the pairs of clusters can be 
null, asymmetric, and mutual. A pair of clusters (i.e. 
a dyad) is null, that is, when neither arc is present, 
when neither of the arcs <Cli, Clj> nor <Clj, Cli> is 
contained in the set of arcs. An asymmetric pair of 
clusters has an arc between the two clusters going in 
one direction or the other, but not both, that is, one 
of the arcs <Cli, Clj> or <Clj, Cli>, but not both, is 
contained in the set of arcs. Asymmetric pairs of 
clusters are represented by one-way arcs, <Cli → 
Clj> or <Clj → Cli>. Mutual or reciprocal pairs of 
clusters have two arcs between the nodes 
representing them, one going in one direction and 
the other going in the opposite direction. Both arcs 
<Cli, Clj> and <Clj, Cli> are contained in the set of 
arcs. The arc with a double-headed arrow between 
two nodes indicates a mutual pair of clusters, <Cli 
↔ Clj> (cf. Wasserman & Faust, 1999, p.124). 
 
Types of Clusters in the Network 
According to in- and out-degrees, we can distinguish 
four types of nodes in a directed graph. We can use 
this information for analysing the network of 
clusters in terms of isolate nodes (if din-degree (ni) = 
dout-degree (ni) = 0), transmitter nodes (if din-degree (ni) = 
0 and dout-degree (ni) > 0), receiver nodes (if din-

degree(ni) > 0 and dout-degree(ni) = 0), and carrier nodes 
(if din-degree(ni) > 0 and dout-degree(ni) > 0). Transmitter 
is the node, which only has arcs originating from it; 
receiver is the node that only has arcs terminating at 
it; carrier is the node that has arcs both to and from it 
(cf. Wasserman & Faust, 1999, p.128).  
 
Conclusion 
We try in this article to translate the standard co-
word analysis in graph language, following the 
example of the social network analysis. Graph 
theory provides us the analytical tools and indicators 
for analysing co-word clusters as non-directional 
weighted graphs. In contrast, the network of clusters 
is defined as a directional weighted graph.  
A real co-word analysis application on a 
bibliographic dataset has been used for illustrating 
this translation. We have used as example a data set 
of 228 publications indexed by 164 keywords on 
rough set theory, and its applications in the field of 
information science, through 1999-2004. This 
dataset was collected from PASCAL database.  
The issue that remains to be considered is the 
alternative to apply directly a graph algorithm to the 
weighted co-occurrence matrix. Thus, a clustering 
process will be done on the graph structure that has 
been generated from the weighted co-occurrence 
matrix. This is in progress using CPCL algorithm 
introduced by Ibekwe-SanJuan (1998), and revisited 
by Berry et al. (2004). We will demonstrate in this 

case that the model only is an undirected weighted 
graph in conformity with the non-directional co-
occurrence relation between keywords.  
We have not yet revisited the cluster centrality and 
density structural properties, nor have we addressed 
the issue of the different class of centrality (degree, 
closeness, and betweenness), and density (in a 
graph, a directed graph or a weighted graph). We 
will address these issues in a following article. 
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Figure 1: The network of clusters represented by a 

directed weighted graph 
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