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Abstract

Twitter has been identified as one of the most popular and promising altmetrics data sources, as it possibly
reflects a broader use of research articles by the general public. Several factors, such as document age, scientific
discipline, number of authors and document type, have been shown to affect the number of tweets received by
scientific documents. The particular meaning of tweets mentioning scholarly papers is, however, not entirely
understood and their validity as impact indicators debatable. This study contributes to the understanding of
factors influencing Twitter popularity of medical papers investigating differences between medical study types.
162,830 documents indexed in Embase to a medical study type have been analysed for the study type specific
tweet frequency. Meta-analyses, systematic reviews and clinical trials were found to be tweeted substantially
more frequently than other study types, while all basic research received less attention than the average. The
findings correspond well with clinical evidence hierarchies. It is suggested that interest from laymen and patients
may be a factor in the observed effects.

Conference Topic
Altmetrics

Introduction

In the context of altmetrics, defined as “the study and use of scholarly impact measures based
on activity in online tools and environments” (Priem, 2014, p. 266), Twitter has been
identified as one of the most interesting and widely-used data sources (Costas, Zahedi, &
Wouters, 2014; Thelwall, Haustein, Lariviére, & Sugimoto, 2013). Although restricted by
brevity—a tweet is limited to 140 characters—Twitter is at the heart of the altmetrics idea to
enable a broader scope for impact assessment beyond citation impact. As Twitter is used
widely and particularly outside of academia by currently 284 million monthly active users',
tweets mentioning scientific papers are hoped to capture use by the general public and thus
societal impact. Initially suggested as predictors of future citations and thus early indicators of
scientific impact (Eysenbach, 2011), more recent large-scale empirical studies suggest that
tweets are more likely to reflect online visibility including some social and scientific impact
but also self-promotion and buzz (Costas et al., 2014; Haustein, Larivieére, Thelwall, Amyot,
& Peters, 2014; Haustein, Peters, Sugimoto, Thelwall, & Lariviére, 2014). The most tweeted
documents seem to attract a lot of online attention rather due to humorous or curious topics
than their scientific contributions, often fitting “the usual trilogy of sex, drugs, and rock and
roll” (Neylon, 2014, para. 6).

Various, mostly quantitative, studies have shown, with respect to scientific papers, that—after
the reference manager Mendeley—Twitter is the altmetrics data source with the second-
largest prevalence and it is constantly increasing to currently more than one fifth of 2012
papers being tweeted (Haustein, Costas, & Lariviere, 2015). Correlation studies provide
evidence that tweets and citations measure different things (for example, Costas et al., 2014;

! https://about.twitter.com/company
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Haustein, Lariviére, et al.,, 2014; Haustein, Peters, et al., 2014; Priem, Piwowar, &
Hemminger, 2012; Thelwall et al., 2013; Zahedi, Costas, & Wouters, 2014). The latest
research shows that Spearman correlations with citations for 2012 papers in Web of Science
are low at p=0.194 for all 1.3 million papers and p=0.148 excluding untweeted papers.
Beyond the particular differences of Twitter coverage and density between scientific
disciplines, research fields and journals reported by various studies (Costas et al., 2014;
Haustein, Lariviére, et al., 2014; Haustein, Peters, et al., 2014; Zahedi et al., 2014), Haustein
et al. (2015) also identified large variations between document types deviating from patterns
known for citations. For example, news items and editorial material, which are usually
considered non-citable items (Martyn & Gilchrist, 1968), are the most popular types of
journal publications on Twitter, showing a tendency of increasing Twitter impact for brief and
condensed document types. A study based on a random sample of 270 tweets to scientific
papers found that the majority of tweets contained either the paper title or a summary, did not
attribute authorship and had a neutral sentiment, while 7% were self-citations (Thelwall,
Tsou, Weingart, Holmberg, & Haustein, 2013). Other findings suggest that automated
diffusion of article links on Twitter plays a role as well (Haustein, Bowman, et al., 2015).
Although these findings provide more evidence that the mechanisms behind tweeting a paper
are different from those citing it, the meaning of tweets to scientific papers as well as the role
of Twitter in scholarly communication are still unclear, not in the least due to the difficulty to
identify ‘tweeter motivations’ based on 140 characters. This study aims to contribute to a
better understanding of tweets as impact metrics by analysing the type of content that is
distributed on Twitter. We propose that certain types of articles appeal more to the public than
others, for example, because of their potential impact on health issues and everyday life or
due to the fact that they are written in a certain way. Previous research has suggested that
certain medical study types have a larger citation potential than others (Andersen &
Schneider, 2011; Kjaergard & Gluud, 2002; Patsopoulos, Analatos, & loannidis, 2005), likely
because they are more useful to the research community. In the context of Twitter, medical
papers are of particular interest, because, on the one hand, these are particularly relevant to
general Twitter users—as opposed to, for example, physics research—and practicing
physicians belong to early adopters of social media in their work practice (Berger, 2009). In a
survey asking researchers about social media use in research, the uptake by health scientists
was, however, slightly below average (Rowlands, Nicholas, Russell, Canty, & Watkinson,
2011).

The aim of this paper is thus to investigate whether there is a connection between different
medical study types and the frequency of tweets per article. We hypothesize that some study
types are more popular on Twitter due to their attractiveness for a broader audience such as
applied medical research relevant to patients as well as meta-analyses summarizing research
and condensing results. We will approach this hypothesis by first investigating the potential
differences in tweet frequency for a range of medical study types. We argue that logically
there should be a connection between the clinical evidence hierarchy (further explained
below) and the types of studies patients might consider interesting to discuss or spread on
social media, as the highest evidence levels are those which are most likely to affect clinical
practice. We therefore expect differences in tweet frequency to be related to evidence levels.

Materials and Methods

Comparing the impact of medical research study types on Twitter requires two pieces of
information per research article: a classification of the study type as well as the number of
tweets received by each particular paper. Currently no database contains both pieces of
information, so that it was necessary to combine data from different sources. For this purpose,
the medical study type classifications from the Embase bibliographical database was used,
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enriched with metadata from PubMed and Web of Science and then matched to Twitter data
from Altmetric.com. The datasets and the matching approach are described in further detail
below. Following these descriptions is an account of the specific measurements and statistical
tools employed as well as the limitations of this study.

Data collection and matching

Due to Twitter’s 140 character limitation, mentions of a scientific paper in tweets are
restricted to links to the publisher’s homepage or unique document identifiers such as the
Digital Object Identifier (DOI) or PubMed ID (PMID). As Twitter only provides access to the
most recent tweets’, it is necessary to constantly query various article identifiers to obtain a
database of tweets to scientific papers. Altmetric LLP has been collecting tweets based on
multiple document identifiers including the DOI, PMID and the publisher’s URL since July
2011 and thus provides a valuable data source for the purposes of our study. To assure
reliable and complete Twitter data, we focus our study on papers published 2012. In order to
link all tweets to the bibliographic data and study type classification from Embase, the DOI
and the PMID are needed.

The study type classifications (see below) for the analysis were retrieved from the Embase
bibliographical database. Embase is a major database containing more bibliographical records
than PubMed Medline; for example, 24%"° more for documents published in 2012. It is
unclear whether the study type classifications of either database outperforms the other,
however, as the indexing of Embase is more exhaustive, we have chosen to use this database
for our study. In order to identify relevant papers from Embase (and to be able to perform a
citation analysis in the future), Clinical Medicine journals were selected from the Web of
Science (WoS) based on the National Science Foundation (NSF) journal classification
system. The Web of Science also provides bibliographic data and DOIs for the relevant
papers, which were used to match Embase study types and tweets from Altmetric.

Embase was queried for the relevant journals using the journal name and various
abbreviations as well as the ISSN. Limiting the results to papers published in 2012, the
metadata of 593,974 records was retrieved from Embase. In order to obtain the PMID needed
to match tweets, PubMed was queried in the same way resulting in 497,619 records. Embase,
PubMed and Web of Science were matched using the DOI, PubMed as well as string matches
of bibliographic information resulting in 238,560 documents in the final dataset, 94.9% of
which with a PMID and 91.1% with a DOL.

The bibliographic metadata was matched to the Altmetric database using the DOI and PMID
resulting in 80,116 records with at least one social media event as captured by Altmetric and
74,060 with at least one tweet at the time of data collection in August 2014. This amounts to
31% of the 238,560 being mentioned on Twitter at least once, which corresponds almost
exactly to the Twitter coverage of biomedical & health sciences papers found by Haustein,
Costas and Lariviere (2015). To ensure comparability between tweets published in January
and December 2012, we fixed the tweeting window to 18 months (546 days) for each of the
tweeted documents, including tweets until 30 June 2013 for papers published on 1 January
2012 and until 30 June 2014 for papers published on 31 December 2012. The day of
publication is based on the publication date provided by Altmetric. As this date is not
available for all records and is sometimes incorrect, the dataset was further reduced to 52,911
documents, which had an Altmetric publication date in 2012 and not received a tweet before

* Twitter’s REST API is limited to tweets from the previous week, while the Streaming API provides realtime
data only.

? For the publication year 2012, Embase contains 1,334,356 records (search: “2012”.yr) and PubMed Medline
contains 1,072,384 (search: 2012[pdat]).
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the publication date. Although these steps lead to an underestimate of the percentage of
tweeted papers, they help to reduce biases induced by publication age when comparing the
visibility of different medical study types on Twitter.

Medical study type classification

Embase indexes all articles using a controlled vocabulary (the Emtree thesaurus), which
contains hierarchically ordered keywords in a classical thesaurus structure. Among these
keywords are study type classifications, of which some are directly identifiable as such (e.g.
randomised controlled trials), while others require some translation (e.g. “sensitivity and
specificity” which is used for diagnostic accuracy studies). The Emtree thesaurus is designed
for indexing and retrieval, and there is thus not a given connection between the hierarchical
ordering of study type keywords and different levels of research methodology. This is
particularly important, as one of the predominant approaches to Western medical research and
practice is the so-called evidence based medicine (EBM). One of the cornerstones of EBM is
the distinction between study types and their hierarchical ordering based on how much
‘evidence’ a study is assumed to contribute to the understanding of a given problem
(Greenhalgh, 2010). Different hierarchies exist, e.g. the Oxford Centre for Evidence Based
Medicine’s “Levels of Evidence” (OCEBM Levels of Evidence Working Group, 2011).

Table 1. Medical study type classification system based on Rohrig et al (2009) and OECBM.
Classifications with raised numerals have narrower terms, which are not shown here.

Medical research

engineering/sequenci
ng; biochemistry;

material development;
genetic studies

observational study
with drugs; secondary

data analysis; case

series; case repon

study

; case control; cross-
sectional; ecological;
monitoring,
surveillance;
Description with
registry data

P Secondary research
research_type
class A1. Theoretical A2. Applied B1. Experimental B2. Observational C1. Experimental C2. Observational D1. Meta-analysis D2. Review
Method development Animal study; cell Clinical study; phase | Therapy; prognostic; Intervention study; Cohort Systematic; narrative
study; genetic [\ diagnostic; field study; group | (prospective/historical)

study_type A1.1 Theoretical
embase_keyword study
Theoretical study
A1.2 Method

development

A2.1 Ex vivo study
Ex vivo study

A2.2 In vivo studies
Animal experiment

A2.3 In vitro study
Animal tissue, cells or
cell components
Cell, tissue or organ
culture’
Human tissue, cells or
cell componentsii

A2.4 Genetic
engineering
Genetic engineering
and gene technology
Genetic engineering
Gene sequence

A2.5 Biochemistry
Biochemistry
Neurochemistry
Phytochemistry

B1.1 Clinical trial
Clinical trial
Clinical trial (topic)
Controlled clinical trial
Multicenter study
Phase 1 clinical trial
Phase 2 clinical trial
Phase 3 clinical trial
Phase 4 clinical trial
Randomized
controlled trial

B2.1 Case study
Case report
Case study

B2.2 Prognostic
study
Prognosis

B2.3 Diagnostic
study
Diagnosis
Diagnostic test
Sensitivity and
specificity

B2.4 Therapy

B2.5 Observational
study with drugs
Observational study
AND (major clinical
study OR controlled
study OR clinical
article)

C1.1 Intervention
study
Intervention study

C1.2 Field study
Field study

C1.3 Group study

C2.1 Case control
study
Case control study”

C2.2 Cohort study
Cohort study
Longitudinal study
Retrospective study
Prospective study

C2.3 Cross sectional
study
Cross-sectional study
C2.4 Ecological
study
C2.5 Monitoring

Patient monitoring

C2.6 Surveillance

C2.7 Registry study

D1.1 Meta-analysis
Meta-analysis

D2.1 Review
Review
Systematic review

We have chosen to use a particular hierarchy, which allows a classification of study types on
their level of research (Rohrig et al., 2009). We have added to the classification of Rohrig et
al. (2009) by adding classification codes and the corresponding keywords in Emtree. The
resulting system has been validated by two field-experts, and is displayed in Table 1. As can
be seen, the classification system allows direct translation between specific Emtree keywords
(we have added the broadest terms as well as their relevant narrower terms) and our
classification codes on the third level (study type). The system allows grouping of study
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types into classes and research types (levels 2 and 1), thus allowing us to analyse the
connection between tweets and the specific study types as well as the broader categories.

Of the entire population of 238,560 records, 162,830 records can be classified using our study
type classification system. Of these, 36,595 (22.5%) receive at least one tweet within the
fixed 18 months tweet window. Of the remaining 75,730 records without a classification,
16,316 (21.5%) receive at least one tweet. These data delimitations will be used to control for
systematic errors in our main dataset (records with classifications). Among those that were
classified, 55% had only one classification, 26% had two, 12% had three and the remaining
7% had four or more classifications. References with n classifications are treated as n
observations, thus resulting in more than 162,830 observations on either classification level.
Some classes in our classification system were not observed at all in the dataset. These classes
are omitted in the results section.

Statistical methods and indicators

For each study type classification level we report several statistics for all documents (referred
to by *4, e.g. N,4) as well as the subset that has received at least one tweet (*7). The included
statistics are number of articles per classification (N), mean tweets per article («), the standard
deviation from the mean (o), percentage of articles with at least one tweet (N7/N4), and the
mean normalised tweets (£) defined as the ratio between u for a specific classification and u
for the entire population.

As the distributions of tweets for any classification are extremely skewed (see results) similar
to citations, the adequacy of the mean as an indicator of average activity is debatable (Calver
& Bradley, 2009). However, while the median might be a methodologically more sound
choice, the distributions are so extremely skewed that for study type level classification,
medians are all 0 when all papers are included and either 1 or 2 if only tweeted papers are
included. The corresponding means range from 0.35 to 1.74 and 2.02 to 5.01, providing
considerably more information, especially as the scales for the mean are continuous. We
therefore use the mean for comparisons, with due care and inclusion of standard deviations
and percentage of tweeted articles to provide further information on differences in means. As
we have large sample sizes, we expect any major differences in means to be real and not due
to chance. However, to test this assumption, all classifications are tested pairwise and against
the background population using the independent sample, unpaired Mann-Whitney test.

Limitations

The most obvious error source in this study is the proportion of papers included in the final
analysis, compared to the overall population of papers published in 2012. Our background
population of 162,830 classified papers only represents 27.4% of the 593,974 records
downloaded from Embase. However, it still represents 68.3% of the 238,560 matchable
records. This is a fairly high number of papers that could be classified, and if it is possible to
improve the matching algorithms, it should also be possible to increase the total number of
classified papers comparably. The only systematic error in this regard is the omission of
particular documents based on lacking or erroneous DOI’s. However, as missing DOI’s are
also an issue in collecting tweets, this error is not likely to affect the tweet counts with the
limitations to tweet-collection that currently exist.

To test if there is a systematic error in the number of tweets per paper, with regard to whether
a paper has been classified with a study type or not, we compare the percentage of papers with
tweets for classified papers with unclassified papers. For the 162,830 papers with a
classification, 36,595 (22.5%) received at least one tweet, while the 75,730 unclassified
papers received tweets on 16,316 (21.5%) papers. These values also corroborate findings by
Haustein, Costas & Lariviere (2015). For the classified papers, mean tweets were 0.67, while
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the mean was 0.71 for the unclassified papers. These differences are not random (p = 2.7¢-14,
using independent two-sample t-test), however, the effect size is also extremely small
(Cohen's d = 0.018). We should therefore not consider the lack of study types as confounders
for the number of tweets.

While the classification system we have used here was validated by two domain experts, it is
only one possible system. Other classifications could have been created, in particular with
regard to the translation from Emtree keywords to our classification system. The choices
made in this regard will affect the results as presented here. However, when we compare the
pairwise scores within a research class, we find high consistency between what could be
considered “similar” research types. The only study type, which varies greatly from the other
study types in their class is the non-systematic review. This is meaningful, as non-systematic
reviews are regarded by medical researchers as much less evidential as their systematic
counterparts.

Results

We analysed the classified papers on the three levels present in our classification system:
research type, research class and study type. In Tables 2 to 4 we report summary statistics for
the three levels, for all papers as well as limited to tweeted papers to determine differences
between the share of tweeted papers as well as intensity of (re)use. Results are visualized in
Figure 1. In Figures 2 to 4 we provide the results of the pairwise comparison to determine the
statistical significance of differences between study types including binary and continuous
statistical significance as well as Cohen’s d to estimate effect size.

Summary statistics

As can be seen from Tables 2 to 4, there are large differences in the mean tweets per
classification, regardless of classification level, although the largest differences are observable
in the study types. The differences are clear from the means (x4 and u7), but even more
obvious when regarding the relative means (fi4 and ji7). This is also where we find the largest
standard deviations, likely due to the smaller N per classification. Meta-analyses and
systematic reviews receive considerably more tweets than other study types, which makes the
synthesizing research type stand out as well. Overall, a generally increasing interest of the
Twitter community can be observed from basic (A) over clinical (B) and epidemiological (C)
to synthesizing research (D) papers. Larger variations per research type can be observed for
clinical research, where clinical trials are much more tweeted than other study types. In fact,
case studies (B2.1) have the lowest mean number of tweets per paper (u4), which also reflects
in the low mean of observational clinical research (B2) on the research class level.
Epidemiological research also performs above average of the entire sample, while basic
research (A) consequently performs below, although with somewhat higher scores for genetic
engineering (A2.4) than the papers classified as ex vivo (A2.1), in vivo (A2.2) and in vitro
(A2.3) studies.
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Table 2. Summary statistics for research type.

Research type NA HAa (o] NT NTWA Mr oT flA .ﬂT
A. Basic research 130,171  0.434 1491 25992 0200 2.172 2.712 0.642 0.743
B. Clinical research 70,262  0.766  2.699 16,623  0.237 3.238  4.773 1.133 1.108
C. Epidemiological research 43,733 0.963  3.201 12,132 0277 3472 5313 1.425 1.188
D. Synthesising research 38,558  1.005  3.223 10,641 0276  3.640 5295 1.486  1.245

Table 3. Summary statistics for research class.

Research class Ny H4 O Nr Ni/N4 ur or [Ha [Hr
A2. Applied basic research 130,171 0.434 1.491 25992 0200 2.172 2.712 0.642 0.743
B1. Experimental clinical research 28,343  1.219 3.495 8,949 0316 3.860 5.337 1.803 1.321
B2. Observational clinical research 41,919 0460 1.928 7,674 0.183 2511 3.894 0.680 0.859
C2. Observational epidemiological 43,733 0963 3.201 12,132 0.277 3472 5313 1425 1.188
research
D1. Meta-analyses 1,883  1.742 4.488 655 0348 5.009 6.448 2577 1.714
D2. Reviews 36,675 0967 3.139 9,986 0.272 3.550 5.199 1430 1.215

Table 4. Summary statistics for study type.

Study type Ny HAa 04 Nr No/Na  pr or Ha Hr
A2.1. Ex vivo study 1,061 0.425 1.285 223 0210  2.022  2.155 0.629 0.692
A2.2. In vivo study 52,127 0.437 1.435 10,676 0.205 2.135 2.536 0.647 0.731
A2.3. In vitro study 75,287 0.427 1.519 14,699 0.195 2.190  2.821 0.632 0.749
A2.4. Genetic engineering 1,696 0.606 1.951 394 0.232 2.607 3.345 0.896 0.892
B1.1. Clinical trial 28,343 1.219 3.495 8,949 0.316 3.860 5.337 1.803 1.321
B2.1. Case study 21,788 0.348 1.847 3,204 0.147 2367  4.292 0.515 0.810
B2.2. Prognostic study 6,618 0.525 1.842 1,407 0.213 2.469 3.341 0.776 0.845
B2.3. Diagnostic study 13,513 0.608  2.081 3,063 0.227 2.682 3.680 0.899 0917
C2.1. Case control study 2,428 0.975 3.547 664 0.273 3.566 6.065 1.443 1.220
C2.2. Cohort study 34,822 0.943 3.163 9,585 0.275 3.424 5.276 1.394 1.171
C2.3. Cross sectional study 4,391 1.106 3.300 1,440 0.294 3.756 5.201 1.636 1.285
C2.5. Monitoring 1,592 0.956 3.163 443 0.278 3.436 5.242 1.414 1.175
D1.1. Meta-analysis 1,883 1.742  4.488 655 0.348 5.009 6.448  2.577 1.714
D2.1. Review 32,962 0.885 2.909 8,694 0.264 3354 4878 1.309 1.147
D2.2. Systematic review 3,713 1.695 4.653 1,292 0.348 4.871 6.839  2.507 1.666

The distributions of tweets per classification are shown in Figure 1, illustrating the highly
skewed nature of these distributions, but also the large differences between some categories.
The results shown in these boxplots are directly comparable to the summary statistics, and the

same classifications stand out as being particularly often tweeted.

From previous research we know that meta-analyses, systematic reviews and clinical trials are
also the most highly cited study types (Andersen & Schneider, 2011). However, whether there
is a connection between the citedness and tweetedness of medical study types is not obvious
from the present data, and will require further research.
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Figure 1. Notched boxplots showing tweet distributions for A) Research type, B) Research class
and C) Study type.

Pairwise comparison

In order to analyse the magnitude of differences in classifications further, pairwise
comparisons were made on each level. The independent two-sample Mann-Whitney test was
used to test whether differences in sample means were due to random effects, and Cohen’s d
was used to estimate the effect size of varying means. There is of course a connection
between the p-values of the Mann-Whitney tests and Cohen’s d, to the extent that non-
significant differences will also have very small effect sizes, as our sample sizes are quite
large. In Figures 2 to 4 these pairwise comparisons are plotted as heatmaps, in which the
diagonal and lower half have been omitted. The statistical significance of differences in mean
are plotted as both binary maps (p below or above 0.05) and as continuous values. On the
research type level, basic research stands out the most from the other types, with a lower
mean of tweets per paper. For research classes, meta-analyses stand out with very large effect
sizes, but overall the effect sizes are somewhat larger on this level than the broader research
types. On the study type level, meta-analyses and systematic reviews stand out, but also
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clinical trials and epidemiological study types have fairly large effect sizes, compared to other
study types.

Cohen's d

04
03
02
0.1

Figure 2. Heatmaps of pairwise comparisons showing A) binary statistical significance, B)
continuous statistical significance and C) Cohen’s d as effect size estimate. All figures are
grouped on the research type level.

D2-
D1-
B2~
B1-
'

p
0.03
0.02
0.01
' ' ' '
o o -
o a

4e-04

3e-04

o

[
-

2e-04

Research type
(¢}
|
Research type
(¢}
Research type

1e-04

p

'
9

'
)

' !
< o <

Research class

@ @
Research type Research class

Cohen's d

0.75

0.50

Research class
Research class

0.25

Research class

- o« - o
o @ < o @

D1~

'
- o o - o«
< @ @ o o <

Research class Research class Research class

Figure 3. Heatmaps of pairwise comparisons grouped on the research class level. See figure 2 for
legend.
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Figure 4. Heatmaps of pairwise comparisons grouped on the study type level. See figure 2 for
legend.
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Discussion and Outlook

We have analysed the frequency of tweets for medical research papers, distinguished by their
specific study type. Our hypothesis was that some study types would be more frequently
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tweeted, because they were interesting to a wider audience (e.g., patients and other laymen)
than other types. It has not been possible to identify literature on which types of research are
actually more useful to laymen, or even which types are most often used. We therefore
assume that research, which is close to clinical practise and may contribute to changes in
treatments would be more interesting to patients, as they might see a specific benefit to
themselves. Based on findings by Haustein, Costas and Lariviére (2015) that briefer and
condensed document types received more tweets than research articles, we also assumed that
synthesising research papers would be more popular on Twitter than basic research.

On the broadest classification level, the results fit well with this assumption, as basic research
stands out as the least frequently tweeted research type on average. Basic medical research is
also furthest removed from the actual treatment of diseases—so much that some physicians
consider it irrelevant to their clinical practise (Andersen, 2013)—which makes them less
interesting for the general public of medical laymen and patients active on Twitter. When
fine-tuning the analysis to study types, meta-analyses and systematic reviews stand out
particularly, followed by clinical trials and epidemiologic study types. This corresponds with
typical evidence hierarchies and reflects similar patterns found for citations (Andersen &
Schneider, 2011; Kjaergard & Gluud, 2002; Patsopoulos et al., 2005). While this might
indicate a relationship between tweets and citations, other studies on a broader level have
found this is not the case (Costas et al., 2014; Haustein et al., submitted; Haustein, Larivicre,
et al., 2014; Zahedi et al., 2014). Other explanations may be that physicians are more likely to
tweet about high-evidence studies or that these are also the same types of studies which are
most interesting to patients. The latter appears obvious, as high-evidence studies are also
more likely to be included in clinical practice guidelines and thus have a greater potential for
changing practice. Moreover, results indicating the uptake of social media to be lower among
health researchers (Rowlands et al., 2011), while the frequency of tweets per paper in this area
is high (Haustein, Peters, et al., 2014), provide some evidence, that the large effect size found
for these study types cannot be explained purely by large Twitter-activity from medical
researchers. Patients, patient groups and laymen interested in research or other factors may
thus play an important role in this observation.

While factors such as entertaining topics may play a role (Neylon, 2014) when looking at the
the top per mille most frequently tweeted papers, it is unlikely that all 1,883 meta-analyses,
3,713 systematic reviews and 28,343 clinical trials should have a higher tweet count than
other study types due to entertainment value, especially as these are also the most highly
regarded study types by the researchers as measured through citations. The mean may of
course be affected by single high-scoring studies, however, as can be seen from Figure 1, it is
the entire distribution rather than merely the mean, which is increased for these study types.
In fact, the maximum tweets per study type is 46 for meta-analyses and 59 for systematic
reviews, while it is 65 for two of the basic research study types and 62 for clinical trials. The
lowest maximum tweet frequency of a study type is 25 (an in vivo study) and the highest is 67
(a cohort study). It can thus be concluded that medical study types are one of the factors
determining popularity of scientific papers on Twitter but they are certainly not the only ones.
Apart from factors explored by previous studies and known also from the citation context—
such as discipline, publication age, number of authors etc.—Twitter-specific effects should
also be investigated. This includes the effect of the number of followers and affordance use as
well as the extent to which scientific papers receive tweets due to author and journal self-
promotion as well as automated Twitter accounts (Haustein, Bowman, et al., 2015).
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