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Abstract 
Twitter has been identified as one of the most popular and promising altmetrics data sources, as it possibly 
reflects a broader use of research articles by the general public. Several factors, such as document age, scientific 
discipline, number of authors and document type, have been shown to affect the number of tweets received by 
scientific documents. The particular meaning of tweets mentioning scholarly papers is, however, not entirely 
understood and their validity as impact indicators debatable. This study contributes to the understanding of 
factors influencing Twitter popularity of medical papers investigating differences between medical study types. 
162,830 documents indexed in Embase to a medical study type have been analysed for the study type specific 
tweet frequency. Meta-analyses, systematic reviews and clinical trials were found to be tweeted substantially 
more frequently than other study types, while all basic research received less attention than the average. The 
findings correspond well with clinical evidence hierarchies. It is suggested that interest from laymen and patients 
may be a factor in the observed effects. 

Conference Topic 
Altmetrics 

Introduction 
In the context of altmetrics, defined as “the study and use of scholarly impact measures based 
on activity in online tools and environments” (Priem, 2014, p. 266), Twitter has been 
identified as one of the most interesting and widely-used data sources (Costas, Zahedi, & 
Wouters, 2014; Thelwall, Haustein, Larivière, & Sugimoto, 2013). Although restricted by 
brevity—a tweet is limited to 140 characters—Twitter is at the heart of the altmetrics idea to 
enable a broader scope for impact assessment beyond citation impact. As Twitter is used 
widely and particularly outside of academia by currently 284 million monthly active users1, 
tweets mentioning scientific papers are hoped to capture use by the general public and thus 
societal impact. Initially suggested as predictors of future citations and thus early indicators of 
scientific impact (Eysenbach, 2011), more recent large-scale empirical studies suggest that 
tweets are more likely to reflect online visibility including some social and scientific impact 
but also self-promotion and buzz (Costas et al., 2014; Haustein, Larivière, Thelwall, Amyot, 
& Peters, 2014; Haustein, Peters, Sugimoto, Thelwall, & Larivière, 2014). The most tweeted 
documents seem to attract a lot of online attention rather due to humorous or curious topics 
than their scientific contributions, often fitting “the usual trilogy of sex, drugs, and rock and 
roll” (Neylon, 2014, para. 6).  
Various, mostly quantitative, studies have shown, with respect to scientific papers, that—after 
the reference manager Mendeley—Twitter is the altmetrics data source with the second-
largest prevalence and it is constantly increasing to currently more than one fifth of 2012 
papers being tweeted (Haustein, Costas, & Larivière, 2015). Correlation studies provide 
evidence that tweets and citations measure different things (for example, Costas et al., 2014; 

                                                
1 https://about.twitter.com/company 
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Haustein, Larivière, et al., 2014; Haustein, Peters, et al., 2014; Priem, Piwowar, & 
Hemminger, 2012; Thelwall et al., 2013; Zahedi, Costas, & Wouters, 2014). The latest 
research shows that Spearman correlations with citations for 2012 papers in Web of Science 
are low at ρ=0.194 for all 1.3 million papers and ρ=0.148 excluding untweeted papers. 
Beyond the particular differences of Twitter coverage and density between scientific 
disciplines, research fields and journals reported by various studies (Costas et al., 2014; 
Haustein, Larivière, et al., 2014; Haustein, Peters, et al., 2014; Zahedi et al., 2014), Haustein 
et al. (2015) also identified large variations between document types deviating from patterns 
known for citations. For example, news items and editorial material, which are usually 
considered non-citable items (Martyn & Gilchrist, 1968), are the most popular types of 
journal publications on Twitter, showing a tendency of increasing Twitter impact for brief and 
condensed document types. A study based on a random sample of 270 tweets to scientific 
papers found that the majority of tweets contained either the paper title or a summary, did not 
attribute authorship and had a neutral sentiment, while 7% were self-citations (Thelwall, 
Tsou, Weingart, Holmberg, & Haustein, 2013). Other findings suggest that automated 
diffusion of article links on Twitter plays a role as well (Haustein, Bowman, et al., 2015). 
Although these findings provide more evidence that the mechanisms behind tweeting a paper 
are different from those citing it, the meaning of tweets to scientific papers as well as the role 
of Twitter in scholarly communication are still unclear, not in the least due to the difficulty to 
identify ‘tweeter motivations’ based on 140 characters. This study aims to contribute to a 
better understanding of tweets as impact metrics by analysing the type of content that is 
distributed on Twitter. We propose that certain types of articles appeal more to the public than 
others, for example, because of their potential impact on health issues and everyday life or 
due to the fact that they are written in a certain way. Previous research has suggested that 
certain medical study types have a larger citation potential than others (Andersen & 
Schneider, 2011; Kjaergard & Gluud, 2002; Patsopoulos, Analatos, & Ioannidis, 2005), likely 
because they are more useful to the research community. In the context of Twitter, medical 
papers are of particular interest, because, on the one hand, these are particularly relevant to 
general Twitter users—as opposed to, for example, physics research—and practicing 
physicians belong to early adopters of social media in their work practice (Berger, 2009). In a 
survey asking researchers about social media use in research, the uptake by health scientists 
was, however, slightly below average (Rowlands, Nicholas, Russell, Canty, & Watkinson, 
2011).  
The aim of this paper is thus to investigate whether there is a connection between different 
medical study types and the frequency of tweets per article. We hypothesize that some study 
types are more popular on Twitter due to their attractiveness for a broader audience such as 
applied medical research relevant to patients as well as meta-analyses summarizing research 
and condensing results. We will approach this hypothesis by first investigating the potential 
differences in tweet frequency for a range of medical study types. We argue that logically 
there should be a connection between the clinical evidence hierarchy (further explained 
below) and the types of studies patients might consider interesting to discuss or spread on 
social media, as the highest evidence levels are those which are most likely to affect clinical 
practice. We therefore expect differences in tweet frequency to be related to evidence levels. 

Materials and Methods 
Comparing the impact of medical research study types on Twitter requires two pieces of 
information per research article: a classification of the study type as well as the number of 
tweets received by each particular paper. Currently no database contains both pieces of 
information, so that it was necessary to combine data from different sources. For this purpose, 
the medical study type classifications from the Embase bibliographical database was used, 
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enriched with metadata from PubMed and Web of Science and then matched to Twitter data 
from Altmetric.com. The datasets and the matching approach are described in further detail 
below. Following these descriptions is an account of the specific measurements and statistical 
tools employed as well as the limitations of this study. 

Data collection and matching 
Due to Twitter’s 140 character limitation, mentions of a scientific paper in tweets are 
restricted to links to the publisher’s homepage or unique document identifiers such as the 
Digital Object Identifier (DOI) or PubMed ID (PMID). As Twitter only provides access to the 
most recent tweets2, it is necessary to constantly query various article identifiers to obtain a 
database of tweets to scientific papers. Altmetric LLP has been collecting tweets based on 
multiple document identifiers including the DOI, PMID and the publisher’s URL since July 
2011 and thus provides a valuable data source for the purposes of our study. To assure 
reliable and complete Twitter data, we focus our study on papers published 2012. In order to 
link all tweets to the bibliographic data and study type classification from Embase, the DOI 
and the PMID are needed.  
The study type classifications (see below) for the analysis were retrieved from the Embase 
bibliographical database. Embase is a major database containing more bibliographical records 
than PubMed Medline; for example, 24%3 more for documents published in 2012. It is 
unclear whether the study type classifications of either database outperforms the other, 
however, as the indexing of Embase is more exhaustive, we have chosen to use this database 
for our study. In order to identify relevant papers from Embase (and to be able to perform a 
citation analysis in the future), Clinical Medicine journals were selected from the Web of 
Science (WoS) based on the National Science Foundation (NSF) journal classification 
system. The Web of Science also provides bibliographic data and DOIs for the relevant 
papers, which were used to match Embase study types and tweets from Altmetric. 
Embase was queried for the relevant journals using the journal name and various 
abbreviations as well as the ISSN. Limiting the results to papers published in 2012, the 
metadata of 593,974 records was retrieved from Embase. In order to obtain the PMID needed 
to match tweets, PubMed was queried in the same way resulting in 497,619 records. Embase, 
PubMed and Web of Science were matched using the DOI, PubMed as well as string matches 
of bibliographic information resulting in 238,560 documents in the final dataset, 94.9% of 
which with a PMID and 91.1% with a DOI. 
The bibliographic metadata was matched to the Altmetric database using the DOI and PMID 
resulting in 80,116 records with at least one social media event as captured by Altmetric and 
74,060 with at least one tweet at the time of data collection in August 2014. This amounts to 
31% of the 238,560 being mentioned on Twitter at least once, which corresponds almost 
exactly to the Twitter coverage of biomedical & health sciences papers found by Haustein, 
Costas and Larivière (2015). To ensure comparability between tweets published in January 
and December 2012, we fixed the tweeting window to 18 months (546 days) for each of the 
tweeted documents, including tweets until 30 June 2013 for papers published on 1 January 
2012 and until 30 June 2014 for papers published on 31 December 2012. The day of 
publication is based on the publication date provided by Altmetric. As this date is not 
available for all records and is sometimes incorrect, the dataset was further reduced to 52,911 
documents, which had an Altmetric publication date in 2012 and not received a tweet before 

                                                
2 Twitter’s REST API is limited to tweets from the previous week, while the Streaming API provides realtime 
data only. 
3 For the publication year 2012, Embase contains 1,334,356 records (search: “2012”.yr) and PubMed Medline 
contains 1,072,384 (search: 2012[pdat]). 
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the publication date. Although these steps lead to an underestimate of the percentage of 
tweeted papers, they help to reduce biases induced by publication age when comparing the 
visibility of different medical study types on Twitter. 

Medical study type classification 
Embase indexes all articles using a controlled vocabulary (the Emtree thesaurus), which 
contains hierarchically ordered keywords in a classical thesaurus structure. Among these 
keywords are study type classifications, of which some are directly identifiable as such (e.g. 
randomised controlled trials), while others require some translation (e.g. “sensitivity and 
specificity” which is used for diagnostic accuracy studies). The Emtree thesaurus is designed 
for indexing and retrieval, and there is thus not a given connection between the hierarchical 
ordering of study type keywords and different levels of research methodology. This is 
particularly important, as one of the predominant approaches to Western medical research and 
practice is the so-called evidence based medicine (EBM). One of the cornerstones of EBM is 
the distinction between study types and their hierarchical ordering based on how much 
‘evidence’ a study is assumed to contribute to the understanding of a given problem 
(Greenhalgh, 2010). Different hierarchies exist, e.g. the Oxford Centre for Evidence Based 
Medicine’s “Levels of Evidence” (OCEBM Levels of Evidence Working Group, 2011).  

Table 1. Medical study type classification system based on Röhrig et al (2009) and OECBM. 
Classifications with raised numerals have narrower terms, which are not shown here. 

 
 
We have chosen to use a particular hierarchy, which allows a classification of study types on 
their level of research (Röhrig et al., 2009). We have added to the classification of Röhrig et 
al. (2009) by adding classification codes and the corresponding keywords in Emtree. The 
resulting system has been validated by two field-experts, and is displayed in Table 1. As can 
be seen, the classification system allows direct translation between specific Emtree keywords 
(we have added the broadest terms as well as their relevant narrower terms) and our 
classification codes on the third level (study_type). The system allows grouping of study 
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types into classes and research types (levels 2 and 1), thus allowing us to analyse the 
connection between tweets and the specific study types as well as the broader categories. 
Of the entire population of 238,560 records, 162,830 records can be classified using our study 
type classification system. Of these, 36,595 (22.5%) receive at least one tweet within the 
fixed 18 months tweet window. Of the remaining 75,730 records without a classification, 
16,316 (21.5%) receive at least one tweet. These data delimitations will be used to control for 
systematic errors in our main dataset (records with classifications). Among those that were 
classified, 55% had only one classification, 26% had two, 12% had three and the remaining 
7% had four or more classifications. References with n classifications are treated as n 
observations, thus resulting in more than 162,830 observations on either classification level. 
Some classes in our classification system were not observed at all in the dataset. These classes 
are omitted in the results section. 

Statistical methods and indicators 
For each study type classification level we report several statistics for all documents (referred 
to by *A, e.g. NA) as well as the subset that has received at least one tweet (*T). The included 
statistics are number of articles per classification (N), mean tweets per article (µ), the standard 
deviation from the mean (σ), percentage of articles with at least one tweet (NT/NA), and the 
mean normalised tweets ( ) defined as the ratio between µ for a specific classification and µ 
for the entire population. 
As the distributions of tweets for any classification are extremely skewed (see results) similar 
to citations, the adequacy of the mean as an indicator of average activity is debatable (Calver 
& Bradley, 2009). However, while the median might be a methodologically more sound 
choice, the distributions are so extremely skewed that for study type level classification, 
medians are all 0 when all papers are included and either 1 or 2 if only tweeted papers are 
included. The corresponding means range from 0.35 to 1.74 and 2.02 to 5.01, providing 
considerably more information, especially as the scales for the mean are continuous. We 
therefore use the mean for comparisons, with due care and inclusion of standard deviations 
and percentage of tweeted articles to provide further information on differences in means. As 
we have large sample sizes, we expect any major differences in means to be real and not due 
to chance. However, to test this assumption, all classifications are tested pairwise and against 
the background population using the independent sample, unpaired Mann-Whitney test. 

Limitations 
The most obvious error source in this study is the proportion of papers included in the final 
analysis, compared to the overall population of papers published in 2012. Our background 
population of 162,830 classified papers only represents 27.4% of the 593,974 records 
downloaded from Embase. However, it still represents 68.3% of the 238,560 matchable 
records. This is a fairly high number of papers that could be classified, and if it is possible to 
improve the matching algorithms, it should also be possible to increase the total number of 
classified papers comparably. The only systematic error in this regard is the omission of 
particular documents based on lacking or erroneous DOI’s. However, as missing DOI’s are 
also an issue in collecting tweets, this error is not likely to affect the tweet counts with the 
limitations to tweet-collection that currently exist. 
To test if there is a systematic error in the number of tweets per paper, with regard to whether 
a paper has been classified with a study type or not, we compare the percentage of papers with 
tweets for classified papers with unclassified papers. For the 162,830 papers with a 
classification, 36,595 (22.5%) received at least one tweet, while the 75,730 unclassified 
papers received tweets on 16,316 (21.5%) papers. These values also corroborate findings by 
Haustein, Costas & Larivière (2015). For the classified papers, mean tweets were 0.67, while 
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the mean was 0.71 for the unclassified papers. These differences are not random (p = 2.7e-14, 
using independent two-sample t-test), however, the effect size is also extremely small 
(Cohen's d = 0.018). We should therefore not consider the lack of study types as confounders 
for the number of tweets. 
While the classification system we have used here was validated by two domain experts, it is 
only one possible system. Other classifications could have been created, in particular with 
regard to the translation from Emtree keywords to our classification system. The choices 
made in this regard will affect the results as presented here. However, when we compare the 
pairwise scores within a research class, we find high consistency between what could be 
considered “similar” research types. The only study type, which varies greatly from the other 
study types in their class is the non-systematic review. This is meaningful, as non-systematic 
reviews are regarded by medical researchers as much less evidential as their systematic 
counterparts.  

Results 
We analysed the classified papers on the three levels present in our classification system: 
research type, research class and study type. In Tables 2 to 4 we report summary statistics for 
the three levels, for all papers as well as limited to tweeted papers to determine differences 
between the share of tweeted papers as well as intensity of (re)use. Results are visualized in 
Figure 1. In Figures 2 to 4 we provide the results of the pairwise comparison to determine the 
statistical significance of differences between study types including binary and continuous 
statistical significance as well as Cohen’s d to estimate effect size. 

Summary statistics 
As can be seen from Tables 2 to 4, there are large differences in the mean tweets per 
classification, regardless of classification level, although the largest differences are observable 
in the study types. The differences are clear from the means (µA and µT), but even more 
obvious when regarding the relative means ( and ). This is also where we find the largest 
standard deviations, likely due to the smaller N per classification. Meta-analyses and 
systematic reviews receive considerably more tweets than other study types, which makes the 
synthesizing research type stand out as well. Overall, a generally increasing interest of the 
Twitter community can be observed from basic (A) over clinical (B) and epidemiological (C) 
to synthesizing research (D) papers. Larger variations per research type can be observed for 
clinical research, where clinical trials are much more tweeted than other study types. In fact, 
case studies (B2.1) have the lowest mean number of tweets per paper (µA), which also reflects 
in the low mean of observational clinical research (B2) on the research class level. 
Epidemiological research also performs above average of the entire sample, while basic 
research (A) consequently performs below, although with somewhat higher scores for genetic 
engineering (A2.4) than the papers classified as ex vivo (A2.1), in vivo (A2.2) and in vitro 
(A2.3) studies. 
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Table 2. Summary statistics for research type. 

Research type NA µA σA NT NT/NA µT σT 
  

A. Basic research 130,171 0.434 1.491 25,992 0.200 2.172 2.712 0.642 0.743 

B. Clinical research 70,262 0.766 2.699 16,623 0.237 3.238 4.773 1.133 1.108 

C. Epidemiological research 43,733 0.963 3.201 12,132 0.277 3.472 5.313 1.425 1.188 

D. Synthesising research 38,558 1.005 3.223 10,641 0.276 3.640 5.295 1.486 1.245 

 
Table 3. Summary statistics for research class. 

Research class NA µA σA NT NT/NA µT σT 
  

A2. Applied basic research 130,171 0.434 1.491 25,992 0.200 2.172 2.712 0.642 0.743 
B1. Experimental clinical research 28,343 1.219 3.495 8,949 0.316 3.860 5.337 1.803 1.321 
B2. Observational clinical research 41,919 0.460 1.928 7,674 0.183 2.511 3.894 0.680 0.859 
C2. Observational epidemiological 
research 

43,733 0.963 3.201 12,132 0.277 3.472 5.313 1.425 1.188 

D1. Meta-analyses 1,883 1.742 4.488 655 0.348 5.009 6.448 2.577 1.714 
D2. Reviews 36,675 0.967 3.139 9,986 0.272 3.550 5.199 1.430 1.215 

 
Table 4. Summary statistics for study type. 

Study type NA µA σA NT NT/NA µT σT   

A2.1. Ex vivo study 1,061 0.425 1.285 223 0.210 2.022 2.155 0.629 0.692 

A2.2. In vivo study 52,127 0.437 1.435 10,676 0.205 2.135 2.536 0.647 0.731 

A2.3. In vitro study 75,287 0.427 1.519 14,699 0.195 2.190 2.821 0.632 0.749 

A2.4. Genetic engineering 1,696 0.606 1.951 394 0.232 2.607 3.345 0.896 0.892 

B1.1. Clinical trial 28,343 1.219 3.495 8,949 0.316 3.860 5.337 1.803 1.321 

B2.1. Case study 21,788 0.348 1.847 3,204 0.147 2.367 4.292 0.515 0.810 

B2.2. Prognostic study 6,618 0.525 1.842 1,407 0.213 2.469 3.341 0.776 0.845 

B2.3. Diagnostic study 13,513 0.608 2.081 3,063 0.227 2.682 3.680 0.899 0.917 

C2.1. Case control study 2,428 0.975 3.547 664 0.273 3.566 6.065 1.443 1.220 

C2.2. Cohort study 34,822 0.943 3.163 9,585 0.275 3.424 5.276 1.394 1.171 

C2.3. Cross sectional study 4,891 1.106 3.300 1,440 0.294 3.756 5.201 1.636 1.285 

C2.5. Monitoring 1,592 0.956 3.163 443 0.278 3.436 5.242 1.414 1.175 

D1.1. Meta-analysis 1,883 1.742 4.488 655 0.348 5.009 6.448 2.577 1.714 

D2.1. Review 32,962 0.885 2.909 8,694 0.264 3.354 4.878 1.309 1.147 

D2.2. Systematic review 3,713 1.695 4.653 1,292 0.348 4.871 6.839 2.507 1.666 

 
The distributions of tweets per classification are shown in Figure 1, illustrating the highly 
skewed nature of these distributions, but also the large differences between some categories. 
The results shown in these boxplots are directly comparable to the summary statistics, and the 
same classifications stand out as being particularly often tweeted. 
From previous research we know that meta-analyses, systematic reviews and clinical trials are 
also the most highly cited study types (Andersen & Schneider, 2011). However, whether there 
is a connection between the citedness and tweetedness of medical study types is not obvious 
from the present data, and will require further research. 
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Figure 1. Notched boxplots showing tweet distributions for A) Research type, B) Research class 

and C) Study type. 

Pairwise comparison 
In order to analyse the magnitude of differences in classifications further, pairwise 
comparisons were made on each level. The independent two-sample Mann-Whitney test was 
used to test whether differences in sample means were due to random effects, and Cohen’s d 
was used to estimate the effect size of varying means. There is of course a connection 
between the p-values of the Mann-Whitney tests and Cohen’s d, to the extent that non-
significant differences will also have very small effect sizes, as our sample sizes are quite 
large. In Figures 2 to 4 these pairwise comparisons are plotted as heatmaps, in which the 
diagonal and lower half have been omitted. The statistical significance of differences in mean 
are plotted as both binary maps (p below or above 0.05) and as continuous values. On the 
research type level, basic research stands out the most from the other types, with a lower 
mean of tweets per paper. For research classes, meta-analyses stand out with very large effect 
sizes, but overall the effect sizes are somewhat larger on this level than the broader research 
types. On the study type level, meta-analyses and systematic reviews stand out, but also 
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clinical trials and epidemiological study types have fairly large effect sizes, compared to other 
study types. 
 

 
Figure 2. Heatmaps of pairwise comparisons showing A) binary statistical significance, B) 
continuous statistical significance and C) Cohen’s d as effect size estimate. All figures are 

grouped on the research type level. 

 

 
Figure 3. Heatmaps of pairwise comparisons grouped on the research class level. See figure 2 for 

legend. 

 

 
Figure 4. Heatmaps of pairwise comparisons grouped on the study type level. See figure 2 for 

legend. 

Discussion and Outlook 
We have analysed the frequency of tweets for medical research papers, distinguished by their 
specific study type. Our hypothesis was that some study types would be more frequently 

34



	
  

	
  

tweeted, because they were interesting to a wider audience (e.g., patients and other laymen) 
than other types. It has not been possible to identify literature on which types of research are 
actually more useful to laymen, or even which types are most often used. We therefore 
assume that research, which is close to clinical practise and may contribute to changes in 
treatments would be more interesting to patients, as they might see a specific benefit to 
themselves. Based on findings by Haustein, Costas and Larivière (2015) that briefer and 
condensed document types received more tweets than research articles, we also assumed that 
synthesising research papers would be more popular on Twitter than basic research. 
On the broadest classification level, the results fit well with this assumption, as basic research 
stands out as the least frequently tweeted research type on average. Basic medical research is 
also furthest removed from the actual treatment of diseases—so much that some physicians 
consider it irrelevant to their clinical practise (Andersen, 2013)—which makes them less 
interesting for the general public of medical laymen and patients active on Twitter. When 
fine-tuning the analysis to study types, meta-analyses and systematic reviews stand out 
particularly, followed by clinical trials and epidemiologic study types. This corresponds with 
typical evidence hierarchies and reflects similar patterns found for citations (Andersen & 
Schneider, 2011; Kjaergard & Gluud, 2002; Patsopoulos et al., 2005). While this might 
indicate a relationship between tweets and citations, other studies on a broader level have 
found this is not the case (Costas et al., 2014; Haustein et al., submitted; Haustein, Larivière, 
et al., 2014; Zahedi et al., 2014). Other explanations may be that physicians are more likely to 
tweet about high-evidence studies or that these are also the same types of studies which are 
most interesting to patients. The latter appears obvious, as high-evidence studies are also 
more likely to be included in clinical practice guidelines and thus have a greater potential for 
changing practice. Moreover, results indicating the uptake of social media to be lower among 
health researchers (Rowlands et al., 2011), while the frequency of tweets per paper in this area 
is high (Haustein, Peters, et al., 2014), provide some evidence, that the large effect size found 
for these study types cannot be explained purely by large Twitter-activity from medical 
researchers. Patients, patient groups and laymen interested in research or other factors may 
thus play an important role in this observation. 
While factors such as entertaining topics may play a role (Neylon, 2014) when looking at the 
the top per mille most frequently tweeted papers, it is unlikely that all 1,883 meta-analyses, 
3,713 systematic reviews and 28,343 clinical trials should have a higher tweet count than 
other study types due to entertainment value, especially as these are also the most highly 
regarded study types by the researchers as measured through citations. The mean may of 
course be affected by single high-scoring studies, however, as can be seen from Figure 1, it is 
the entire distribution rather than merely the mean, which is increased for these study types. 
In fact, the maximum tweets per study type is 46 for meta-analyses and 59 for systematic 
reviews, while it is 65 for two of the basic research study types and 62 for clinical trials. The 
lowest maximum tweet frequency of a study type is 25 (an in vivo study) and the highest is 67 
(a cohort study). It can thus be concluded that medical study types are one of the factors 
determining popularity of scientific papers on Twitter but they are certainly not the only ones. 
Apart from factors explored by previous studies and known also from the citation context—
such as discipline, publication age, number of authors etc.—Twitter-specific effects should 
also be investigated. This includes the effect of the number of followers and affordance use as 
well as the extent to which scientific papers receive tweets due to author and journal self-
promotion as well as automated Twitter accounts (Haustein, Bowman, et al., 2015). 

Acknowledgements 
The authors would like to thank Euan Adie and Altmetric.com for access to their Twitter data. 
SH acknowledges funding from the Alfred P. Sloan Foundation, grant no. 2014-3-25.  

35



	
  

	
  

References 
Andersen, J. P. (2013). Conceptualising research quality in medicine for evaluative bibliometrics. University of 

Copenhagen. Retrieved June 10, 2015 from http://vbn.aau.dk/files/119316655/JensPeterAndersenThesis.pdf 
Andersen, J. P., & Schneider, J. W. (2011). Influence of study design on the citation patterns of Danish, medical 

research. In Proceedings of the ISSI 2011 Conference (pp. 46–53). 
Berger, E. (2009). This sentence easily would fit on Twitter: Emergency physicians are learning to “tweet.” 

Annals of Emergency Medicine, 54(2), A23–A25. doi:10.1016/j.annemergmed.2009.06.002 
Calver, M. C., & Bradley, J. S. (2009). Should we use the mean citations per paper to summarise a journal’s 

impact or to rank journals in the same field? Scientometrics, 81(3), 611–615. doi:10.1007/s11192-008-2229-
y 

Costas, R., Zahedi, Z., & Wouters, P. (2014). Do “altmetrics” correlate with citations? Extensive comparison of 
altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for 
Information Science and Technology, n/a–n/a. doi:10.1002/asi.23309 

Eysenbach, G. (2011). Can tweets predict citations? Metrics of social impact based on Twitter and correlation 
with traditional metrics of scientific impact. Journal of Medical Internet Research, 13(4), e123. 
doi:10.2196/jmir.2012 

Greenhalgh, T. (2010). How to read a paper: The basics of evidence-based medicine (4th ed.). Oxford: BMJ 
Books. 

Haustein, S., Bowman, T. D., Holmberg, K., Tsou, A., Sugimoto, C. R., & Larivière, V. (2015). Tweets as 
impact indicators: Examining the implications of automated bot accounts on Twitter. Journal of the 
Association for Information Science and Technology. Retrieved from http://arxiv.org/abs/1410.4139 

Haustein, S., Costas, R., & Larivière, V. (2015). Characterizing social media metrics of scholarly papers: the 
effect of document properties and collaboration patterns. Submitted to PLOS ONE. 

Haustein, S., Larivière, V., Thelwall, M., Amyot, D., & Peters, I. (2014). Tweets vs. Mendeley readers: How do 
these two social media metrics differ? It - Information Technology, 56(5), 207–215. doi:10.1515/itit-2014-
1048 

Haustein, S., Peters, I., Sugimoto, C. R., Thelwall, M., & Larivière, V. (2014). Tweeting biomedicine: An 
analysis of tweets and citations in the biomedical literature. Journal of the Association for Information 
Science and Technology, 65(4), 656–669. doi:10.1002/asi.23101 

Kjaergard, L. L., & Gluud, C. (2002). Citation bias of hepato-biliary randomized clinical trials. Journal of 
Clinical Epidemiology, 55(4), 407–10. 

Martyn, J., & Gilchrist, A. (1968). An Evaluation of British Scientific Journals. London: Aslib. 
Neylon, C. (2014). Altmetrics: What are they good for? PLOS Opens. Retrieved from 

http://blogs.plos.org/opens/2014/10/03/altmetrics-what-are-they-good-for/ 
OCEBM Levels of Evidence Working Group. (2011). The Oxford 2011 Levels of Evidence. Oxford: Oxford 

Centre for Evidence-Based Medicine. 
Patsopoulos, N. a, Analatos, A. a, & Ioannidis, J. P. A. (2005). Relative citation impact of various study designs 

in the health sciences. JAMA  : The Journal of the American Medical Association, 293(19), 2362–6. 
doi:10.1001/jama.293.19.2362 

Priem, J. (2014). Altmetrics. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: harnessing multi-
dimensional indicators of performance (pp. 263–287). Cambridge, MA: MIT Press. 

Priem, J., Piwowar, H. A., & Hemminger, B. M. (2012). Altmetrics in the wild: Using social media to explore 
scholarly impact. arXiv, 1–17. Digital Libraries. doi:http://arxiv.org/abs/1203.4745v1 

Röhrig, B., du Prel, J.-B., Wachtlin, D., & Blettner, M. (2009). Types of study in medical research: part 3 of a 
series on evaluation of scientific publications. Deutsches Ärzteblatt International, 106(15), 262–8. 
doi:10.3238/arztebl.2009.0262 

Rowlands, I., Nicholas, D., Russell, B., Canty, N., & Watkinson, A. (2011). Social media use in the research 
workflow. Learned Publishing, 24(3), 183–195. doi:10.1087/20110306 

Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other 
social web services. PloS One, 8(5), e64841. doi:10.1371/journal.pone.0064841 

Thelwall, M., Tsou, A., Weingart, S., Holmberg, K., & Haustein, S. (2013). Tweeting links to academic articles. 
Cybermetrics: International Journal of Scientometrics, Informetrics and Bibliometrics, 1–8. Retrieved from 
http://cybermetrics.cindoc.csic.es/articles/v17i1p1.html 

Zahedi, Z., Costas, R., & Wouters, P. (2014). How well developed are altmetrics? cross-disciplinary analysis of 
the presence of “alternative metrics” in scientific publications. Scientometrics. doi:10.1007/s11192-014-
1264-0 

36




