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Abstract

One of the determining factors of the quality of Web search engines is the size of their index. In addition to its
influence on search result quality, the size of the indexed Web can also tell us something about which parts of
the WWW are directly accessible to the everyday user. We propose a novel method of estimating the size of a
Web search engine’s index by extrapolating from document frequencies of words observed in a large static
corpus of Web pages. In addition, we provide a unique longitudinal perspective on the size of Google and Bing’s
indexes over a nine-year period, from March 2006 until January 2015. We find that index size estimates of these
two search engines tend to vary dramatically over time, with Google generally possessing a larger index than
Bing. This result raises doubts about the reliability of previous one-off estimates of the size of the indexed Web.
We find that much, if not all of this variability can be explained by changes in the indexing and ranking
infrastructure of Google and Bing. This casts further doubt on whether Web search engines can be used reliably
for cross-sectional webometric studies.

Conference Topic
Webometrics

Introduction

Webometrics (or cybermetrics) is commonly defined as the study of the content, structure,
and technologies of the World Wide Web (WWW) using primarily quantitative methods.
Since its original conception in 1997 by Almind & Ingwersen, researchers in the field have
studied aspects such as the link structure of the WWW, credibility of Web pages, Web
citation analysis, the demographics of its users, and search engines (Thelwall, 2009). The size
of the WWW, another popular object of study, has typically been hard to estimate, because
only a subset of all Web pages is accessible through search engines or by using Web crawling
software. Studies that attempt to estimate the size of the WWW tend to focus on the surface
Web—the part indexed by Web search engines—and often only at a specific point in time.

In the early days of search engines, having the biggest index size provided search engines
with a competitive advantage, but a changing focus on other aspects of search result quality,
such as recency and personalization, has diminished the importance of index size in recent
years. Nevertheless, the size of a search engine’s index is important for the quality of Web
search engines, as argued by Lewandowski and Hochstotter (2008). In addition, knowledge of
the size of the indexed Web is important for webometrics in general, as it gives us a ceiling
estimate of the size of the WWW that is accessible by the average Internet user.

The importance of index sizes in the early days of Web search resulted in several estimation
methods, most of which used the overlap between different Web search engines to estimate
the size of the indexed Web as a whole. Bharat and Broder (1998) used an overlap-based
method to estimate the size of the WWW at around 200 million pages. Lawrence & Giles
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(1998, 1999) produced higher estimates of 320 and 800 million pages in 1998 and 1999 using
a similar method, and Gulli and Signorini (2005) updated these estimates to 11.5 billion
pages. The last decade has seen little work on index size estimation, but a general problem
with all of the related work so far is that all the analyses have been cross-sectional. There has
been no analysis of index size on a longer time scale that sheds light on the robustness of the
different estimation methods. The handful of studies that have taken a longer-term perspective
have typically focused on Web page persistence (Koehler, 2004) or academic link structure
(Payne & Thelwall, 2008), but never search engine index size.

In this paper we present a novel method of estimating the size of a Web search engine’s index
by extrapolating from document frequencies of words observed in a large static corpus of
Web pages. In addition, we provide a unique longitudinal perspective on our estimation
method by applying it to estimate the size of Google and Bing’s' indexes over a period of
close to nine years, from March 2006 until January 2015.

We find that index size estimates of these two search engines tend to vary wildly over time,
with Google generally possessing a larger index than Bing. This considerable variability has
been noted in earlier work (e.g., Rousseau, 1999; Payne & Thelwall, 2008), which raises
doubts about the reliability of previous one-off estimates of the size of the indexed Web. In
our analysis, we find that much of this variability can be explained by changes in the indexing
and ranking infrastructure of Google and Bing. This casts further doubt on whether Web
search engines can be used reliably for one-off Webometric studies, confirming similar
sentiments expressed by, for instance, Payne and Thelwall (2008), and Thelwall (2012).

The remainder of this paper is organized as follows. The next section contains a review of
related work in webometrics and on estimating the size of the indexed WWW. We then
explain our estimation method in more detail, followed by the results of our estimation
method and an analysis of the variability we uncover. We then discuss our findings and draw
our conclusions.

Related work

Since its inception, researchers have studied many different aspects of the Web. This section
provides a brief overview of some of the key studies on measuring different properties of
Web search engines and the WWW, in particular work on estimating their size.

Measuring the Web

Over the past two decades many aspects of the WWW have been studied, such as the link
structure of the Web that emerges from the hyperlinks connecting individual Web pages.
Broder et al. (2000) were among the first to map the link structure of the WWW. They
showed that the Web graph can be visualized as a bow-tie structure with 90% of all pages
being a part of the largest strongly connected component, which was confirmed in 2005 by
Hirate et al. (2008). Payne and Thelwall (2008) performed a longitudinal analysis of
hyperlinks on academic Web sites in the UK, Australia and New Zealand over a six-year
period. They found that the inlink and outlink counts were relatively stable over time, albeit
with large fluctuations at the individual university level. As a result, they concluded that such
variability could create problems for the replicability and comparability of webometrics
research. Other related work on analyzing the link structure of the Web includes Kleinberg et
al. (1999) and Bjorneborn (2004).

! Formerly known as Microsoft Live Search until May 28, 2009.
* Recent daily estimates produced by our method can be accessed through http://www.worldwidewebsize.com/.
The time series data displayed in Figure 1 are available online at http://toinebogers.com/?page id=757.
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Web search engines are an essential part of navigating the WWW and as a result have
received much attention. Many different aspects of Web search have been investigated, such
as ranking algorithms, evaluation, user behavior, and ethical and cultural perspectives. Bar-
Ilan (2004) and Zimmer (2010) provide clear, multi-disciplinary overviews of the most
important work on these aspects.

From a webometric perspective the hit counts, search engine rankings, and the persistence of
the indexed URLSs are highly relevant for the validity and reliability of webometric research
using Web search engines. Rousseau (1999) was among the first to investigate the stability of
search engine results by tracking the hit counts—the number of results indicated for a query—
for three single-word search terms in Altavista and NorthernLight over a 12-week period in
1998. Altavista exhibited great variability over a longer time period, even with only three
anecdotal query words. Rousseau attributed this to changes in Altavista’s infrastructure with
the launch of a new version in 1998. Thelwall (2008) also performed a cross-sectional,
quantitative comparison of the hit counts and search engine results of Google, Yahoo!, and
Live Search. He extracted 1,587 single-word queries from English-language blogs “based
purely on word frequency criteria” (Thelwall, 2008, p. 1704), found strong correlations
between the hit count estimates of all three search engines, and recommended using Google
for obtaining accurate hit count estimates. Uyar (2009) extended Thelwall’s work by
including multi-word queries. He found that the number of words in the query significantly
affects the accuracy of hit counts, with single-word queries providing nearly double the hit
count accuracy as compared to multi-word queries. Finally, Thelwall and Sud (2012)
investigated the usefulness of the Bing Search API 2.0 for performing webometric research.
They examined, among other things, the hit count estimates and found that these can vary by
up to 50% and should therefore be used with caution in webometric research.

Bar-Ilan et al. (2006) compared the rankings of three different Web search engines over a
three-week period. They observed that the overlap in result lists for textual queries was much
higher than for image queries, where the result lists of the different search engines showed
almost no overlap. Spink et al. (2006) investigated the overlap between three major Web
search engines based on the first results pages and found that 85% of all returned top 10
results are unique to that search engine.

The issue of Web page persistence in search engine indexes—how long does a Web page
remain indexed and available—was first examined by Bar-Ilan (1999) for a single case-study
query during a five-month period in 1998. She found that for some search engines up to 60%
of the results had disappeared from the index at the end of the period. She hypothesized that
the distributed nature of search engines may cause different results to be served up from
different index shards at different points in time. Koehler (2004) reported on the results of a
six-year longitudinal study on Web page persistence. He also provided an overview of
different longitudinal studies on the topic and concluded, based on the relatively small
number of studies that exist, that Web pages are not a particularly persistent medium,
although there are meaningful differences between navigation and content pages.

Index size estimation

In the last two decades, various attempts have been directed at estimating the size of the
indexed Web. Some approaches focus on estimating the index size of a single search engine
directly, while a majority focuses on estimating the overlap to indirectly estimate the size of
the total indexed Web.

Highly influential work on estimating index size was done by Bharat & Broder (1998), who
calculated the relative sizes of search engines by selecting a random set of pages from one
engine, and checking whether each page was indexed by another engine. They used 35,000
randomly generated queries of 6 to 8 words selected at random from a Web-based lexicon and
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sent these queries to four search engines. One of every top-100 results pages was randomly
selected, after which they calculated the relative sizes and overlaps of search engines by
selecting this random set of pages from one engine, and checking whether the page was
indexed by another engine. By combining their method with self-reported index sizes from
the commercial search engines, they estimated the size of the WWW to be around 200 million
pages. Gulli et al. (2005) extended the work of Bharat and Broder by increasing the number of
submitted queries by an order of magnitude, and using 75 different languages. They
calculated the overlap between Google, Yahoo!, MSN Live, and Ask.com, and updated the
previous estimates to 11.5 billion pages in January 2005. Most approaches that use the work
of Bharat and Broder as a starting point focus on improving the sampling of random Web
pages, which can be problematic because not every page has the same probability of being
sampled using Bharat and Broder’s approach. Several researchers have proposed methods of
near-uniform sampling that attempt to compensate for this ranking bias, such as Henzinger et
al. (2000), Anagnostopoulos et al. (2006), and Bar-Yossef and Gurevich (2006, 2011).
Lawrence and Giles (1998) estimated the indexed overlap of six different search engines.
They captured the queries issued by the employees of their own research institute and issued
them to all six engines. The overlap among search engines was calculated on the aggregated
result sets, after which they used publicly available size figures from the search engines to
estimate the size of the indexed Web to be 320 million pages. Lawrence and Giles updated
their previous estimates to 800 million Web pages in July 1999. Dobra et al. (2004) used
statistical population estimation methods to improve upon the original 1998 estimate of
Lawrence and Giles. They estimated that Lawrence and Giles were off by a factor of two and
that the Web contained around 788 million Web pages in 1998. Khelghati et al. (2012)
compared several of the aforementioned estimation methods as well as some proposed
modifications to these methods. They found that a modified version of the approach proposed
by Bar-Yossef et al. (2011) provided the best performance.

Estimating the Size of a Search Engine Index through Extrapolation

On the basis of a textual corpus that is fully available, both the number of documents and the
term and document frequencies of individual terms can be counted. In the context of Web
search engines, however, we only have reported hit counts (or document counts), and we are
usually not informed about the total number of indexed documents. Since it is the latter we
are interested in, we want to estimate the number of documents indexed by a search engine
indirectly from the reported document counts.

We can base such estimates on a training corpus for which we have full information on
document frequencies of words and on the total number of documents. From the training
corpus we can extrapolate a size estimation of any other corpus for which document counts
are given. Suppose that, for example, we collect a training corpus 7 of 500,000 web pages, i.e.
|71 = 500,000. For all words w occurring on these pages we can count the number of
documents they occur in, or their document count, d(w). A frequent word such as are may
occur in 250,000 of the documents, i.e., it occurs in about one out of every two documents;
dr(are) = 250,000. Now if the same word are is reported to occur in 1 million documents in

another corpus C, i.e., its document count dc(are) = 1,000,000, we can estimate by

dc(are)x|T| .

extrapolation that this corpus will contain about |C| = , 1.e., 2 million documents.

dr(are)
There are two crucial requirements that would make this extrapolation sound. First, the
training corpus would need to be representative of the corpus we want to estimate the size of.
Second, the selection of words® that we use as the basis for extrapolation will need to be such

? We base our estimates on words rather than on multi-word queries based on the findings of Uyar (2009).
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that the extrapolations based on their frequencies are statistically sound. We should not base
our estimates on a small selection of words, or even a single word, as frequencies of both
high-frequency and low-frequency words may differ significantly among corpora. Following
the most basic statistical guidelines, it would be better to repeat this estimation for several
words, e.g., twenty times, and average over the extrapolations.

A random selection of word types is likely to produce a selection with relatively low
frequencies, as Zipf’s second law predicts (Zipf, 1995). A well-known issue in corpus
linguistics is that when any two corpora are different in genre or domain, very large
differences are likely to occur in the two corpora’s word frequencies and document
frequencies, especially in the lower frequency bands of the term distributions. It is not
uncommon that half of the word types in a corpus occur only once; many of these terms will
not occur in another disjoint corpus, even if it is of the same type. This implies that
extrapolations should not be based on a random selection of terms, many of which will have a
low frequency of occurrence.

The selection of words should sample several high-frequency words but preferably also
several other words with frequencies spread across the document frequency bands.

It should be noted that Zipf’s law concerns word frequencies, not document frequencies.
Words with a higher frequency tend to recur more than once in single documents. The higher
the frequency of a word, the more its document frequency will be lower than its word
frequency. A ceiling effect thus occurs with the most frequent words if the corpus contains
documents of sufficient size: they tend to occur in nearly all documents, making their
document frequencies about the same and approaching the actual number of documents in the
corpus, while at the same time their word token frequencies still differ to the degree predicted
by Zipf’s law (Zipf, 1995). This fact is not problematic for our estimation goal, but it should
be noted that this hinges on the assumption that the training corpus and the new corpus of
which the frequencies are unknown, contain documents of about the same average size.

As our purpose is to estimate the size of a Web search engine’s index, we must make sure that
our training corpus is representative of the web, containing documents with a representative
average size. This is quite an ambitious goal. We chose to generate a randomly filtered
selection of 531,624 web pages from the DMOZ’ web directory. We made this selection in
the spring of 2006. To arrive at this selection, first a random selection was made of 761,817
DMOZ URLs, which were crawled. Besides non-existing pages, we also filtered out pages
with frames, server redirects beyond two levels, and client redirects. In total, the DMOZ
selection of 531,624 documents contains 254,094,395 word tokens (4,395,017 unique word
types); the average DMOZ document contains 478 words.

We then selected a sequence of DMOZ words by their frequency rank, starting with the most
frequent word, and selecting an exponential series where we increase the selection rank
number with a low exponent, viz. 1.6. We ended up with a selection of the following 28
words, the first nine being high-frequency function words and auxiliary verbs: and, of, to, for,
on, are, was, can, do, people, very, show, photo, headlines, william, basketball, spread, nfl,
preliminary, definite, psychologists, vielfalt, illini, cheque, accordée, reticular, rectificacio.
The DMOZ directory is multilingual, but English dominates. It is not surprising that the tail of
this list contains words from different languages.

Our estimation method then consists of retrieving document counts for all 28 words from the
search engine we wish to estimate the number of documents for, obtaining an extrapolated
estimate for each word, and averaging (taking a mean) over the 28 estimations. If a word is not
reported to occur in any document (which hardly happens), it is not included in the average.

* DMOZ is also called the Open Directory Project, http://www.dmoz.org/.
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To stress-test the assumption that the DMOZ document frequencies of our 28 words yield
sensible estimates of corpus size, we estimated the size of a range of corpora: the New York
Times part of the English Gigaword corpus’ (newspaper articles), the Reuters RCV1 corpus®
(newswire articles), the English Wikipedia’ (encyclopedic articles, excluding pages that
redirect or disambiguate), and a held-out sample of random DMOZ pages. Table 1 provides
an overview of the estimations on these widely different corpora. The size of the New York
Times corpus is overestimated by a large margin of 126%, while the sizes of the other three
corpora are underestimated. The size of the DMOZ sample—not overlapping with the training
set, but drawn from the same source—is relatively accurately estimated with a small
underestimation of 1.3%. Larger underestimations, for Reuters RCV1 and Wikipedia, may be
explained by the fact that these corpora have shorter documents on average.

The standard deviations in Table 1, computed over the 28 words, indicate that the different
estimates are dispersed over quite a large range. There seems to be no correlation with the
size of the difference between the actual and the estimated number of documents. Yet, the
best estimate, for the small DMOZ held-out sample (—1.3% error), coincides with the smallest
standard deviation.

Table 1. Real versus estimated numbers (with standard deviations) of documents on four textual
corpora, based on the DMOZ training corpus statistics: two news resources (top two) and two
collections of web pages (bottom two). The second and third column provides the mean and
median number of words per document.

Words per

document
Corpus Mean Median # Documents Estimate  St. dev. | Difference
New York Times *94-°01 | 837 794 1,234,426 2,789,696 1,821,823 +126%
Reuters RCV1 295 229 453,844 422271 409,648 —7.0%
Wikipedia 447 210 2,112,923 2,024,792 1,385,105 —4.2%
DMOZ test sample 477 309 19,966 19,699 5,839 —1.3%

After having designed this experiment in March 2006, we started to run it on a daily basis on
March 13, 2006, and have continued to do so. Each day we sent the 28 DMOZ words as
queries to two search engines: Bing' and Google®. We retrieve the reported number of indexed
pages on which each word occurs as it is returned by the web interface of both search engines,
not their APIs. This number is typically rounded: it retains three or four significant numbers,
the rest being padded by zeroes. For each word we use the reported document count to
extrapolate an estimate of the search engine’s size, and average over the extrapolations of all
words. The web interfaces to the search engines have gone through some changes, and the
time required to adapt to these changes sometimes caused lags of a number of days in our
measurements. For Google 3,027 data points were logged, which is 93.6% of the 3,235 days
between March 13, 2006 and January 20, 2015. For Bing, this percentage is 92.8% (3,002
data points).

Results

Figure 1 displays the estimated sizes of the Google and Bing indices between March 2006 and
January 2015. For visualization purposes and to avoid clutter, the numbers are unweighted

> https://catalog.ldc.upenn.edu/LDC2003T05.

% http://trec.nist.gov/data/reuters/reuters.html.

" Downloaded on October 28, 2007.

¥ We also sent the same 28 words to two other search engines that were discontinued at some point after 2006.
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running averages of 31 days, taking 15 days before and after each focus day as a window. The
final point in our measurements is January 20, 2015; hence the last point in this graph is
January 5, 2015. Rather than a linear, monotonic development we observe a rather varying
landscape, with Google usually yielding the larger estimates. The largest peak in the Google
index estimates is about 49.4 billion documents, measured in mid-December 2011.
Occasionally, estimates are as low as under 2 billion pages (e.g. 1.96 billion pages in the
Google index on November 24, 2014), but such troughs in the graph are usually short-lived,
and followed by a return to high numbers (e.g., to 45.7 billion pages in the Google index on
January 5, 2015).
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Figure 1. Estimated size of the Google and Bing indexes from March 2006 to January 2015. The
lines connect the unweighted running daily averages of 31 days. The colored, numbered markers
at the top represent reported changes in Google and Bing's infrastructure. The colors of the
markers correspond to the color of the search engine curve they related to; for example, red
markers signal changes in Google's infrastructure (the red curve). Events that line up with a
spike are marked with an ‘O’, other events are marked with an ¢X°.

Extrinsic variability

The variability observed in Figure 1 is not surprising given the fact that the indexing and
ranking architectures of Web search engines are updated and upgraded frequently. According
to Matt Cutts’, Google makes “roughly 500 changes to our search algorithm in a typical
year”, and this is likely the same for Bing. While most of these updates are not publicized,

? http://googleblog.blogspot.com/2011/11/ten-algorithm-changes-on-inside-search.html.
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some of the major changes that Google and Bing make to their architectures are announced on
their official blogs. To examine which spikes in Figure 1 can be attributed to publicly
announced architecture changes, we went through all blog posts on the Google Webmaster
Central Blog'®, the Google Official Blog'', the Bing Blog'?, and Search Engine Watch'® for
reported changes to their infrastructure. This resulted in a total of 36 announcements related
to changes in the indexing or ranking architecture of Google and Bing'®. The colored,
numbered markers at the top of Figure 1 show how these reported changes are distributed
over time.

For Google 20 out of the 24 reported changes appear to correspond to sudden spikes in the
estimated index size, and for Bing 6 out of 12 reported changes match up with estimation
spikes. This strongly supports the idea that much of the variability can be attributed to such
changes. Examples include the launch of Bing on May 28, 2009 (event #9), the launch of
Google’s search index Caffeine on June 8, 2010 (event #14), the launch of the BingBot
crawler (event #18), and the launches of Google Panda updates, and Bing’s Catapult update
(events #20, #31, and #33).

Of course not all spikes can be explained by reported events. For example, the spike in Bing’s
index size in October 2014 does not match up with any publicly announced changes in their
architecture, although it is a likely explanation for such a significant change. In addition,
some changes to search engine architectures are rolled out gradually and would therefore not
translate to spikes in the estimated size. However, much of the variation in hit counts, and
therefore estimated index size, appears to be caused by changes in the search engine
architecture—something already suggested by Rousseau in his 1999 study.

Discussion and Conclusions

In this paper we presented a method for estimating the size of a Web search engine’s index.
Based on the hit counts reported by two search engines, Google and Bing, for a set of 28
words, the size of the index of each engine is extrapolated. We repeated this procedure and
performed it once per day, starting in March 2006. The results do not show a steady,
monotonic growth, but rather a highly variable estimated index size. The larger estimated
index of the two, the one from Google, attains high peaks of close to 50 billion web pages, but
occasionally drops to small indices of 2 billion pages as well. Are we measuring the extrinsic
variability of the indices, or an intrinsic variability of our method? Our method is fixed: the
same 28 words are sent to both search engines on every day. The frequencies of our test
words are unlikely to change dramatically in a corpus as big as a crawl of the indexed Web;
especially the document counts for our high-frequent words in our list should approximate (or
at least be in the same order of magnitude as) the total number of documents in the index. We
therefore believe that the variability we measure is largely, if not entirely attributable to the
variability of the index of Google and Bing. In other words, what we are measuring is the
genuine extrinsic variability of the indices, caused by changes (e.g., updates, upgrades,
overhauls) of the indices. In Figure 1 we highlighted several publicly announced changes to
both search engines’ indices, many of which co-occur with drastic changes in index size as
estimated by our method (20 out of the 24 reported changes in the Google index, and 6 out of
12 changes in Bing’s index).

This variability, noted earlier also by Rousseau (1999), Bar-Ilan (1999), and Payne and
Thelwall (2008), should be a cause for concern for any non-longitudinal study that adopts

' http:/googlewebmastercentral.blogspot.com/.

' http:/googleblog.blogspot.com/.

2 http://blogs.bing.com/.

" http://searchenginewatch.com.

'* A complete, numbered list of these events can be found at http://toinebogers.com/?page_id=757.
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reported hit counts. It has been pointed out that “Googleology is bad science” (Kilgariff,
2007), meaning that commercial search engines exhibit variations in their functioning that do
not naturally link to the corpus they claim to index. Indeed, it is highly unlikely that the real
indexable Web suddenly increased from 20 to 30 billion pages in a matter of weeks in
October 2014; yet, both the Bing and Google indices report a peak in that period. It is
important to note, however, that the observed instability of hit counts does not automatically
imply that measuring other properties of search engines for use in webometric research, such
as result rankings or link structure, suffer from the same problem.

Our estimates do not show a monotonic growth of Web search engines’ indices, which was
one of the hypothesized outcomes at the onset of this study in 2006. The results could be
taken to indicate that the indexed Web is not growing steadily the way it did in the late 1990s.
They may even be taken to indicate the indexed Web is not growing at all. Part of this may
relate to the growth of the unindexed Deep Web, and a move of certain content from the
indexed to the Deep Web.

The unique perspective of our study is its longitude. Already in 1999, Rousseau remarked that
collecting time series estimates should be an essential part of Internet research. The nine-year
view visualized in Figure 1 shows that our estimation is highly variable. It is likely that other
estimation approaches, e.g. using link structure or result rankings, would show similar
variance if they were carried out longitudinally. Future work should include comparing the
different estimation methods over time periods, at least of a few years. The sustainability of
this experiment is non-trivial and should be planned carefully, including a continuous
monitoring of the proper functioning. The scripts that ran our experiment for nearly nine
years, and are still running, had to be adapted to changes in the web interfaces of Google and
Bing repeatedly. The time required for adapting the scripts after the detection of a change
caused the loss of 6-7% of all possible daily measurements.

Our approach, but also the different approaches discussed in the section on related research
introduce different kinds of biases. We list here a number of possible biases and how they
apply to our own approach:

Query bias. According to Bharat and Broder (1998), large, content-rich documents have a
better chance of matching a query. Since our method of absolute size estimation relies on
the hit counts returned by the search engines, it does not suffer from this bias, as the result
pages themselves are not used.

Estimation bias. Our approach relies on search engines accurately reporting the genuine
document frequencies of all query terms. However, modern search engines tend to not
report the actual frequency, but instead estimate these counts, for several reasons. One
such reason is their use of federated indices: a search engine’s index is too large to be
stored on one single server, so the index is typically divided over many different servers.
Update lag or heavy load of some servers might prevent a search engine from being able to
report accurate, up-to-date term counts. Another reason for inaccurate counts is that
modern search engines tend to use document-at-a-time (DAAT) processing instead of
term-at-a-time (TAAT) processing (Turtle & Flood, 1995). In TAAT processing the entire
postings list is traversed for each query term in its entirety, disregarding relevant
documents with each new trip down the postings list. In contrast, DAAT processing the
postings list is traversed one document at a time for all query terms in parallel. As soon as
a fixed number of relevant documents—say 1,000—are found, the traversal is stopped and
the resulting relevant documents are returned to the user. The postings list is statically
ranked before traversal (using measures such as PageRank) to ensure high quality relevant
documents. Since DAAT ensures that, usually, the entire postings list does not have to be
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traversed, the term frequency counts tend to be incomplete. Therefore, the term frequencies
are typically estimated from the section of the postings list that was traversed.

Malicious bias. According to Bharat and Broder (1998, p. 384), “a search engine might rarely
or never serve pages that other engines have, thus completely sabotaging our approach”.
This unlikely scenario is not likely to influence our approach negatively. However, if
search engines were to maliciously inflate the query term counts, this would seriously
influence our method of estimating the absolute index sizes.

Domain bias. By using text corpora from a different domain to estimate the absolute index
sizes, a domain bias can be introduced. Because of different terminology, term statistics
collected from a corpus of newswire, for instance, would not be applicable for estimating
term statistics in a corpus of plays by William Shakespeare or corpus of Web pages. We
used a corpus of Web pages based on DMOZ, which should reduce the domain bias
considerably. However, in general the pages that are added to DMOZ are of high quality,
and are likely to have a higher-than-average PageRank, which might introduce some
differences between our statistics and the ideal statistics.

Cut-off bias. Some search engines typically do not index all of the content of all web pages
they crawl. Since representative information is often at the top of a page, partial indexing
does not have adverse effect on search engine performance. However, this cut-off bias
could affect our term estimation approach, since our training corpus contains the full texts
for each document. Estimating term statistics from, say, the top 5 KB of a document can
have a different effect than estimating the statistics from the entire document.
Unfortunately, it is impractical to figure out what cut-off point the investigated search
engines use so as to replicate this effect on our training corpus.

Quality bias. DMOZ represents a selection of exemplary, manually selected web pages,
while it is obvious that the web at large is not of the same average quality. Herein lies a
bias of our approach. Some aspects of the less representative parts of the web have been
identified in other work. According to Fetterly et al. (2005), around 33% of all Web pages
are duplicates of one another. In addition, in the past about 8% of the WWW was made up
of spam pages (Fetterly et al., 2004). If this is all still the case, this would imply that over
40% of the Web does not show the quality nor the variation present in the DMOZ training
corpus.

Language bias. Our selection of words from DMOZ are evenly spread over the frequency
continuum and show that DMOZ is biased towards the English language, perhaps more
than the World Wide Web at large. A bias towards English may imply an underestimation
of the number of pages in other languages, such as Mandarin or Spanish.

This exploratory study opens up at least the following avenue for future research that we

intend to pursue. We have tacitly assumed that a random selection of DMOZ pages represents

“all languages”. With the proper language identification tools, by which we can identify a

proper DMOZ subset of pages in a particular language, our method allows to focus on that

language. This may well produce an estimate of the number of pages available on the Web in
that language. Estimations for Dutch produce numbers close to two billion Web pages".

Knowing how much data is available for a particular language, based on a seed corpus, is

relevant background information for language engineering research and development that

uses the web as a corpus (Kilgariff & Grefenstette, 2003).
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