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Abstract 
The rank of a journal based on simple citation information is a popular measure. The simplicity and availability 
of rankings such as Impact Factor, Eigenfactor and SciMago Journal Rank based on trusted commercial sources 
ensures their widespread use for many important tasks despite the well-known limitations of such rankings. In 
this paper we look at an alternative approach based on information on papers from social and mainstream media 
sources. Our data comes from altmetric.com who identify mentions of individual academic papers in sources 
such as Twitter, Facebook, blogs and news outlets. We consider several different methods to produce a ranking 
of journals from such data. We show that most (but not all) schemes produce results, which are roughly similar, 
suggesting that there is a basic consistency between social media based approaches and traditional citation based 
methods. Most ranking schemes applied to one data set produce relatively little variation and we suggest this 
provides a measure of the uncertainty in any journal rating. The differences we find between data sources also 
shows they are capturing different aspects of journal impact. We conclude a small number of such ratings will 
provide the best information on journal impact. 

Conference Topic 
Altmetrics 

The background and purpose of the study 
Journal metrics, such as the Thomson Reuters Journal Impact Factor, were originally 
developed in response to a publisher need to demonstrate the academic attention accorded to 
research journals. Over the intervening 50 years since Garfield’s work in the field, the Impact 
Factor and other metrics, such as Eigenfactor (Bergstrom, 2007), have been used and misused 
in a variety of contexts in academia. An oft-discussed perception is that a journal-level metric 
is a good proxy for the quality of the articles contained in a journal. 
In the evaluation and bibliometrics communities citation counting is generally understood not 
to be an appropriate proxy for quality but rather a measure of attention. The type of attention 
being measured in this case is quite specific and has particular properties. What is being 
measured is the attention to a paper of peers in related fields. The bar for registration of this 
attention is relatively high – the researcher or researchers making the citation must deem the 
target article to be of sufficient value that they include a citation in a work of their own that in 
turn is deemed publishable (e.g. see Archambault & Lariviére, 2009, and references therein). 
The timescale associated with citations is also long – typically being limited by the review 
and publication process associated with particular fields. Additionally, it is accepted that 
journal-level metrics say little regarding the merit of particular articles in the journal since 
journal-level metrics are often calculated based on thousands of articles and are often biased 
by the performance of the tails of the distribution of citations. These realisations have led to 
the recent growth in popularity of article-level metrics or altmetrics. 
Altmetrics have broadened the range of types of attention that we can measure and track for 
scholarly articles. Mostly based in social and traditional media citations, the altmetric 
landscape is one that is constantly changing with the introduction of different data sources all 
the time. While, one the one hand, altmetrics suffer from all the unevenness of traditional 
citations, they occur over different timescales, which provides us with a more nuanced view 
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of the lifecycle of a scholarly work. Aggregating alternative metrics at a journal level will 
complement Journal Impact Factor, giving us new insights into different facets of attention. 
Traditional citation-based metrics are difficult to calculate since they are based on the 
bibliometric journal databases, such as Thomson Reuters’ Web of Science. Conversely, 
Altmetrics are conglomerates of disparate sources of references to research output derived 
from non-traditional sources, primarily modern electronic sources characterised by fast 
response times (see Bornmann, 2014, for a recent overview). The lack of any systematic peer 
review is another characteristic of most altmetric data. The open and electronic nature of 
much altmetric data offers the prospect of alternative paper and journal metrics, which may be 
more accessible to stakeholders. The rapid response of such data to innovations suggests such 
metrics might offer improvements over metrics based on slower traditional sources. 
This paper considers a number of approaches to the aggregation of altmetric data in order to 
create a robust journal-level metric that complements the existing citation-based metrics 
already in use across the academic community. The aim is not to create a contender for a 
single metric to quantify journal output but instead to create a useful measure that gives “the 
user” a sense of the non-citation attention that a journal attracts in the same way that Journal 
Impact Factor, Eigenfactor and other related metrics give this sense for citation attention. 

 
Figure 1. The relationships recorded in our altmetric.com data. The raw data illustrated here 
contains fifteen “mentions” (solid lines) by five “authors” (hexagons A1 to A5) of seven papers 
(squares P1 to P7). We also know the journal (circles), which published a paper (dashed lines). 

Data Sources  
In this paper we use the 2013 IF (Impact Factor) and EF (Eigenfactor) as examples of 
traditional sources of journal ratings. Our altmetric data comes from 20 months of data from 
altmetric.com, a commercial company. For each mention about a paper we had the journal in 
which it was published, the source (twitter, Facebook, etc.) and the account (here termed an 
‘author’), as shown in Figure 1. In our case, a ‘paper’ has to be an article coming from a 
known journal. A single ‘author’ for us is a single account (e.g. one twitter account) or a 
single source (a news outlet such as a newspaper). In some cases several different authors may 
be responsible for one site or one author could provide information to many different sites or 
accounts (a twitter account, a facebook account, a blog, etc) but in our data such an author 
appears as many distinct authors. 

Methods 
The simplest type of journal altmetric is one based on basic counts where each mention of a 
paper in a journal adds one to that journal’s count. We collected counts for social media ‘sbc’, 
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non-social media ‘nsbc’ (e.g. downloads) and combined scores ‘bc’ (for blind count i.e. with 
no weighting for different sources). We also obtained the current journal rating produced by 
altmetric.com (denoted ‘ca’), which is a weighted count rating in which different sources are 
given different weights (blogs and news sources get highest weighting). 

Network Definitions 
A criticism of simple count based methods, such as Impact Factor or our altmetric counts 
discussed above, is that some citations or some altmetric authors are more important than 
others. Eigenfactor is an illustration of a response to these criticisms in the realm of traditional 
data (Bergstrom, 2007), as it uses a network based view to arrive at a PageRank style 
measure. We will also turn to a network-based view in order to look at a wide range of 
measures, which probe the relationships between journals on a much larger scale. 
There are many possible network representations of our data. In this paper we will focus only 
on networks in which the nodes represent journals. The central idea in our construction of the 
relationship between two journals is that we only want to consider activity from authors who 
mention both journals because only these authors are making an implicit comparison between 
journals. The activity of each author is used to define their own “field of interest” in a self-
consistent manner and so the activity of authors is used to make comparisons between 
journals in the same field as defined by each author’s interests. This ensures that at a 
fundamental level we avoid the much discussed problem of making comparisons between 
papers or journals from different fields. An author only interested in medical issues will only 
contribute to the evaluation of Nature, Science and so forth in terms of their interest in these 
multidisciplinary journals relative to Cell or other specialised journals.  
A useful analogy here is that each journal is a team and an author who mentions articles 
published in two journals represents one game between these journals – our pairwise 
comparison. The score in each game is the number of mentions so in comparing two journals j 
and l, the score for journal j from the game represented by author a is recoded as the entry 
Jja.in a rectangular matrix. In Figure 1 the game between J1 and J2 represented by author A2 
has the result 2-1, a ‘win’ for journal 1 over journal J2 suggesting that we should rate journal 
J1 more highly than journal J2 given the activity of this one author. 
We shall consider three different ways of quantifying the journal relationships, the network 
edges. Our first approach gives us an adjacency matrix S where the entry Sjl gives the weight 
of the edge from journal j to journal l, and this is given by 𝑆𝑆!" =   

!
!!"

𝐽𝐽!"!∈!!" , where 

𝐴𝐴!" =    𝑎𝑎|𝐽𝐽!" > 0, 𝐽𝐽!" > 0   . Here j and l represent different journals and a is one author. Jja is 
a matrix, which is equal to the number of papers mentioned by author a which were published 
in journal j. The expression for Sjl is counting the number of times papers published in journal 
j are mentioned by authors who also mention papers in journal l, with the total normalised by 
the number of such authors. Note that this defines a sparse, weighted and directed network. In 
our conventions if journal j is better than journal l we will have Sjl > Slj . 
Our second definition gives us an adjacency matrix P where 𝑃𝑃!" =   

!
!!"

𝜃𝜃 𝐽𝐽!" − 𝐽𝐽!"!∈!!" . 

Here 𝜃𝜃 𝑥𝑥 = 1 if 𝑥𝑥 > 0 otherwise this function gives 0. This definition counts how many 
authors mention more papers in journal j than they do papers in journal l., normalising again 
by the number of authors who are able to make this pairwise comparison. Again Pjl > Plj if 
journal j is better than journal l. 
Finally we define an adjacency matrix Q where 𝑄𝑄!" =   

!
!!"

Θ 𝐽𝐽!" − 𝐽𝐽!"!∈!!" .   Here 

Θ 𝑥𝑥 = 1 if 𝑥𝑥 > 0, Θ 0 = 0.5 while for negative values this function gives 0. This definition 
counts how many authors mention more papers in journal j than they do papers in journal l 
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but when this is balanced gives an equal weighting to both side. This definition has the useful 
property that Qjl + Qlj = 1 (not generally true for matrix P). 

Network Measures 
Once we have our network with journals as nodes, we need to find ways to use this structure 
to define which nodes are the most important. Measures which quantify the importance of a 
node are known as centrality measures in social network analysis. Unfortunately, many 
standard measures do not take into account the weights or directions of edges, both of which 
carry crucial information in our case. We used two well-known network centrality measures 
to illustrate our approach: PageRank and HITS (e.g. see Langville & Meyer, 2012). Both may 
be cast as eigenvector problems and there are fast algorithms for large networks which are 
readily available. We apply these two methods to all three networks, giving six different 
ratings e.g. ‘qpr’ indicates a PageRank rating derived from a Q matrix while ‘ph’ indicates a 
HITs rating derived using a P matrix. 
We also tried a different type of measure known as Points Spread Rating (denoted ‘psr’) 
(p.117-120, Langville & Meyer, 2012) where the rating rj for journal j is 𝑟𝑟! =    𝑆𝑆!"−𝑆𝑆!"! /
𝑛𝑛!, (similarly for the P and Q matrices) and nj is the number of journals. This expression 
ensures that the differences (rj-rl) in the rating of any two journals j and l are as close as 
possible to the actual differences in the number of average mentions of papers. 

Comparing Ratings 
Once we have obtained different ratings, the final task is to make a comparison. The simplest 
approach is to make a qualitative comparison of the top ranked journals in each case. For a 
more quantitative approach we used standard methods of multivariate statistics. First we 
found a correlation matrix whose entries express the similarity of two rating methods: the 
Pearson correlation matrix based on the numerical values of the ratings obtained, Spearman’s 
matrix which based on the ranking of journals, and finally Kendall’s tau. These were analysed 
using principle component analysis or hierarchical clustering methods. 

Findings 
In terms of the altmetric data we found typical fat-tailed distributions, both for the number of 
mentions of a paper from different sources and in terms of the number of mentions put out by 
a single author. Some sources, such as twitter, are significantly larger than others. 
When comparing different journal rating schemes, some results were found only with 
Spearman and Kendall tau correlation measures (which are based on the ranks of journals). 
The Pearson measure (based on actual rating values gave slightly different results in some 
cases. However in most cases there good agreement. Some typical results are shown in Figure 
2 and numbers for ranking schemes in the following text refer to the labels in Figure 2. 
The variation between different rating schemes for the same altmetric data source gives 
relatively little variation, roughly on the same scale as the difference we find between IF and 
EF. The four different methods shown for ratings based on Facebook mentions (6,12,16,19) 
are a typical example. Clearly our Points Spread Rating scheme (psr, 21,22,23) and our 
simple counts of non-social media mentions (nsbc, 6) produces outliers. 
Some sources, such as Facebook and News, were also noticeably different from IF and EF, 
but the difference was much smaller than that found with the psr rating. One source, which 
gave ratings well correlated with IF and EF was blogs (8, 11, 15, 18). 
Likewise, most of our simple count based ratings were just as close to IF (3) or EF (5) as 
these two rating schemes were to each other. This includes our unweighted count of all 
mentions (bc, 1), the number of times papers are mentioned (pc, 7), counts of just social 
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media mentions (sbc, 14), and in particular the more sophisticated weighted journal ranking 
produced by altmetric.com (ca, 2). 
Most of our work focused on statistics for the whole collection. A look at the top journals, see 
Table 1, confirmed that at an individual level our new altmetric network ratings were giving 
sensible results, but with variations which indicate the uncertainty in such rankings. 

 
Figure 2. A comparison of some of the different ranking schemes using a Spearman correlation 

matrix. On the left a dendrogram and on the right a scatter plot using the first two principle 
components of PCA. For clarity, only a limited subset of our ratings were used in these plots. 

Discussion 
Given our differences between ranking based comparisons (Spearman and Kendall Tau) and 
results based on Pearson correlation matrices, this suggests that ratings are dominated by the 
measurement of the few journals, which have most of the mentions (fat tails). This is one 
reason we favour Spearman correlation matrices in Figure 2 and would suggest this makes 
sense in most journal ranking contexts. 
Our Points Spread Rating scheme (psr, 21, 22, 23) seems to be reflecting very different 
patterns in the data from those found using other approaches. Given that the other approaches 
include Impact Factor, widely accepted as a measure of journal attention, we think it is hard to 
see a role for PSR to rank journals. Likewise, the simple blind counts of non-social media 
mentions (nsbc, 6) does not appear to be useful. 
The remaining different altmetric sources and rating methods do show enough similarity to 
suggest that they are all an acceptable measure of journal importance. At the same time there 
are some interesting differences indicating that our altmetric based schemes are capturing 
different features of the impact of journals. At the very least this diversity will indicate the 
level of uncertainty in rating schemes. Two possible reasons for the close correlation of blogs 
and IF are as follows. Perhaps papers in high IF journals are of intrinsic interest to blog 
writers. Alternatively blog authors may read a limited number of journals but these tend to be 
those with high IF. Probably both factors are important, each reinforcing the other to produce 
the strong correlation we find. 
Another interesting feature is that most of our simple count based ratings, which are not 
normalised by the number of articles per journal, are also well correlated with IF (3) which 
does use normalised counts. This can be explained if there is a correlation between the 
number of papers in a journal and its impact, something we can see in of count of number of 
papers (pc, 7). We will be looking at normalised altmetric counts in the future but it appears 
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normalisation may not be essential. In particular, we note the altmetric.com journal rating (ca, 
2) is well correlated and so provides a good handle on the impact of journals. 

Table 1. Top ten journals based on various network based altmetric measures. 

Rank Q, HITS, Blogs Q, HITS, News S, PageRank, Google+ 
1 Nature Nature Nature 
2 PNAS PNAS PLoS ONE 
3 Science PLoS ONE Science 
4 PLoS ONE Science PNAS 
5 New England J. of Med. New England J. of Med. New England J. of Med. 
6 British Medical J.-C.R.Ed. British Medical J.-C.R.Ed. British Medical J.-C.R.Ed. 
7 The Lancet (British Ed.) Nature Communications Scientific Reports 
8 JAMA JAMA JAMA 
9 Proc. Royal Soc. B: The Lancet (British Ed.) The Lancet (British Ed.) 
10 Current Biology Pediatrics PLoS Biology 

 
The fact that we tried many different rating methods and that (with the exception of psr based 
measures) they showed variations on scales no bigger than those found between IF and EF, 
suggests that no one method is optimal in any sense. However we can use such a suite of 
metrics to get a handle on the uncertainty associated with any measure. This would be of great 
utility for users and a contrast to the three decimal point ‘accuracy’ associated with IF results. 

Conclusions 
We have shown how to use altmetric data to provide a reasonable journal ranking. Most types 
of altmetric data appear to give useful information in the sense that the correlation with IF is 
acceptable. At the same time altmetric data can be sufficiently different that it might reflect 
different types of impact. Our results suggest that different rating methods can provide a 
measure of the uncertainty of any journal ranking. Confirming these patterns over longer 
periods and producing a better understanding of the social reasons for the patterns we have 
found are future directions for our work. It would also be interesting to compare our results 
with journal attention measures derived from journal usage patterns, see for example Bollen et 
al 2009, an aspect not included in our data.  
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