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Abstract 
A multi-parametric family of stretch exponential distributions with various power law tails is introduced and is 
shown to describe adequately the empirical distributions of scientific citation of individual authors. The four-
parametric families are characterized by a normalization coefficient in the exponential part, the power exponent 
in the power-law asymptotic part, and the coefficient for the transition between the above two parts. The 
distribution of papers of individual scientist over citations of these papers is studied. Scientists are selected via 
total number of citations in three ranges: 102-103, 103-104, and 104-105 of total citations. We study these intervals 
for physicists in ISI Web of Knowledge. The scientists who started their scientific publications after 1980 were 
taken into consideration only.  It is detected that the power coefficient in the stretch exponent starts from one for 
low-cited authors and has to trend to smaller values for scientists with large number of citation. At the same 
time, the power coefficient in tail drops for large-cited authors.  
One possible explanation for the origin of the stretch-exponential distribution for citation of individual author is 
done.  

Conference topic 
Citation and co-citation analysis 

Introduction  
The discussion of how citations of individual authors are distributed has a long history going back 
even to E. Garfield (1955). In general, there are two points of view on this: the distribution of 
papers of each scientist is a so-called stretch exponent W  ~  exp −𝑥!/𝑇   , where x is the number 
of citations, T is some normalization, α is the power exponent coefficient (Redner, 1998; 
Laherrere & Sornette, 1998). Usually α is considered as 0,3-0,5 (Redner, 1998, Iglesias & 
Pecharroman,  2006). A slightly more complicated distribution was introduced by (Tsallis & de 
Albuquerque, 2000).  
The second point is that the above distribution has power-law (Pareto, Zipf) character, i.e. W ~ x-β 
where β is the power (Silagadze, 1999; Vazquez 2001; Lehmann et al., 2003). Often, this 
dependence is treated as the asymptote (tail) of distribution for comparably large x. In this case, 
the main body is considered as log-normal (Redner, 2005; Stanley, 2010). It should be noted that 
there are more complicated models of citation distribution.  
The idea of our work is to consider the citation distribution of individual scientists taking into 
account that the distributions for “various-ranking” scientists can be different. Also, it is 
interesting to join the above stretch-exponential distributions and power-law distributions: 
observation of tails of citation distributions of individual scientists often demonstrates a presence 
of small number of extremely-high cited articles, while other articles of considered scientists can 
be cited much more moderately. From this point of view, the consideration of citation data of a 
large set of authors (like in (Redner, 1998) etc.) provides rough enough results. Thus, we 
concentrate on analysis of citation distributions of individual scientists, taking into account some 
differences in the total number of citations of each. The cumulative distribution of the number of 
articles with some or larger number of citations will be analyzed. 
Of course, the proposed approach is rough enough, since it does not take into account the co-
authoring of cited articles. The authors think that it should be considered in further studies in case 
of wide scientific interest.  



 273 

The descriptive model is based on our previous works for tailed distributions: Gauss for stock 
return distributions (Romanovsky & Vidov, 2011), and exponential Boltzmann distribution for 
new car sells, incomes and weights (Romanovsky & Garanina, 2015). The authors do not know 
consistently introduced mathematical formulae for distributions with exponential main part and 
power law asymptote.   

Multi-parametric family of curves with stretch exponential main part and power law 
tail 
To define the general form of the desired distribution, one may proceed from the results presented 
in (Romanovsky & Vidov, 2011) as a starting point. According to (Romanovsky & Vidov, 2011), 
the sum of a large quantity N of random values similarly distributed with the probability density 
function (PDF) of the Student’s (generally, non-integer) type ~ z0

2β/(z0
2 + f2)2β has the distribution 

of the Gaussian form for comparably small values of fluctuations f: 

𝑊! 𝑓 ≈
1
𝜋
exp  (−𝑓!) 

and ~ 1/f-2β for large f (z0 being a normalization constant, the sum is treated as  random walks in 
(Romanovsky & Vidov, 2011)). The obvious mathematical generalization to get the exponential 
part with power-law tail is to perform the transformation f2→R/T (here T can be interpreted as an 
effective “temperature”). Upon switching from parameters N, z0, β to parameters θ, T, σβ, the 
transformation yields the curve with the stretch exponential main part and a transition to power 
law at the tail in an explicit form of a PDF (Romanovsky & Garanina, 2015): 

 (1) 

Here R is variable, Γ is the gamma-function, Κβ-1/2 is the modified Bessel function of the 2nd kind 
(also known as ‘‘McDonald function’’).  
The approximation of Eq. (1) for comparably small R (up to several units of T1/2σ) is easily 
reduced to only a dependence on parameter T 

𝑊! 𝑅 ≅ !
!
exp − !!!

!
                                                 (2) 

The general drop off law for WTβθ in the case of large R is R-βσ. The parameter θ describes 
transition among (stretch) exponential and power-law part of (1). This transition goes under larger 
R (and smaller values of ) under larger values of θ. 
To obtain a general form of W, note that 

,                        (3) 

It is easy to see that it is a monotonic function of β. Indeed, if ν=µ+1, one finds, considering the 
rule for modified Bessel functions of the 2nd kind, that the ratio Iµ(x)/Iν(x) becomes 

   
Furthermore, ∀η : ν > η > µ, and one finds that Iν>Iη>Iµ. Thus, it is not necessary to investigate 
(1,3) with an arbitrary β. It is enough to consider the integer β = 2, 3, . . ., while integrals with 
intermediate β will be ‘‘locked’’ among integrals with neighboring integers β that are expressed 
by means of elementary functions. Then n=β-1, 

            (4) 

The three functions WT(σβ)θ for σβ=2, 1, 0.8 are: 
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                      (5) 

We used here the simplest form of the function (1) for β=2 for the following approximations of 
empirical data. The functions WT(σβ)θ for σ= 0.5, 0.25, 0.2 are shown in  Fig.1. It is seen as a well-
coincidence of general functions with corresponding approximation exponents for comparably 
small values of variable R.   
 

 
Figure 1. Functions WT(σβ)θ for β=2 and σ=0.5 (curve 3), σ=0.25 (curve 2),  σ=0.2 (curve 1) for 

comparably small R. The straight lines (4-6) are exponents exp(-R2σ/T) for σ=1,0.5,0.4, 
respectively. Here T=1, θ=300. 

For large R, these functions drop off as R-2, R-1, R-0.8 , respectively (see Fig.2): 

 

Figure 2. Functions WT(σβ)θ for the same β and σ (curves 3-1) as on Fig.1. Hyperboles R-βσ 
(straight lines 6-4 on double-logarithmic plot) have σ=0.5, 0.25, and 0.2 (curve 4), respectively. 

Parameters T, θ are the same as on Figure 1. 

Thus the introduced function (1) well-describes the stretch exponent for small (and moderate) 
values of argument, and provides power-law asymptotes for large R. We used these functions in 
the next section. 

Distribution of citation of individual authors 
It was found that the distributions of citations of individual authors are different. It can be 
expected due to, for example “Matthew effect” (see Bonitz et al., 1997; Bonitz & Scharnhorst, 
2001; Stanley, 2010). One may expect that scientists with total number of citation in range 102-
103, 103-104, and 104-105 have different distributions of citations. Let us call the scientists with 
total number of citations in these ranges as the “first-type scientist”, etc. We study these intervals 
for physicists in the ISI Web of Knowledge. The scientists who started their scientific publications 
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after 1980 were taken into consideration only. We took 20 scientists for the first two ranges, and 
several scientists for the third. Typical examples of citation distributions are presented below on 
Figs. 3-5. 
On Fig. 3, the cumulative citation distribution (i.e. the number of articles with citations larger than 
the value R) for experienced scientists with total number of citations in the first range 102-103 is 
presented: 

 
Figure 3. The distribution of articles over citations for the first-type scientist. Open squares are 

empirical points, the solid curve is WT(σβ)θ (5) for β=2, σ=0.5, T=6.5, θ=10, dashed line is an 
exponent (2) with σ=0.5, T=6.5. 

The function WT(σβ)θ on Fig.3 is normalized on total number of articles of the first-type scientists 
in ISI Web of Knowledge. The variable R is the number of citations normalized on T that is the 
mean citation of this author. It is seen that the function WT(σβ)θ (5) well describes the empirical 
data, the clear difference from the exponent (2) is on-site. At the same time, the total exit on the 
asymptotic curve ~ R-2 does not realize. The last was observed for other-types scientists.  
The citation distribution of the second-type scientist (this is a range of world well-known person) 
is demonstrated on Fig. 4: 

 
Figure 4. The distribution of articles over citations for the second-type scientist. Open squares 
are empirical points, the solid curve is WT(σβ)θ (5) for β=2, σ=0.25, T=47.4, θ=5, dashed line is an 

exponent (2) with σ=0.25, T=46. 

The normalization of WT(σβ)θ on Fig.4 was on total number of articles also. Indeed, the variable R 
is normalized now on T2σ = (47.4)2σ = 6.9. The “difference” between empirical data as well as 
function (5) with pure stretch exponent exp(-R1/2/T) is larger than on Fig.3 for the first-type 
scientist. The total exit on the asymptotic curve ~ R-1 is also not realized. 
The citation distribution of the third-type scientist (this is a range of Nobel Prize winners) is 
demonstrated on Fig. 5: 



 276 

 
Figure 5. The distribution of articles over citations for the third-type scientist. Open squares are 

empirical points, the solid curve is WT(σβ)θ (5) for β=2, σ=0.2, T=340, θ=5, dashed line is an 
exponent (2) with σ=0.2, T=340. 

The normalization of WT(σβ)θ on Fig.5 is the same, the variable R is normalized now on T2σ = 3402σ 
= 10.3. It is interesting that all values T2σ for all three-types scientists are close to each other and 
may characterize the citation distribution of individual scientists.  

Explanation attempt 
Let us try to explain the appearance of stretch exponents in cumulative distribution of such 
random values like citations. We start from the standard exponential distribution 

𝑊! = exp −𝑥                                                            (6) 
where we used normalization T=1 to simplify the following expressions.  
How can these calculations be “translated” into the language of citations? The first cause of a 
citation of some article is the scientific results of this article. Since the author who can potentially 
cite the above article may find or not find this article, the process of citation due to the scientific 
significance looks like the two-body exchange (of information in this case) and is provided by 
distribution (6). Thus it may be that the basic cumulative distribution of citations arises due to the 
scientific significance of the article and looks like (6).  
There are clear additional independent causes for citations. One of them is the name of author (or 
one of authors in case of co-authoring) of a potentially cited article. It may be the name of 
scientist in the group that works in the same area of science studied with the author of the cited 
paper, there arises another causes to cite some scientist. Since this scientist may also be chosen 
randomly in the process of information exchange, the probability distribution to cite this scientist 
looks like (6) as well. If now the citation is realized due to two causes: by scientific significance 
and cited article author, the random value of such citation is the factor of two random values 
characterized by distribution (6).  
Since the causes for citation are independent, they can be considered as some coordinates. For two 
cases, they are above “scientific significance” and “author’s name”. The variation of these 
coordinates here are from small to large scientific significance and from large to small reputation 
of cited scientist. At the same time, we observe citation as being a principally one-dimensional 
value: the citation either exists or does not exist. Therefore, all distributions (6) reduce to one 
dimension. The transformation of coordinates in (7) x2 →y provides than for cumulative 
distribution function 

𝑊!(𝑦) = exp − 𝑦                                                      (7) 
i.e. the main part of stretch exponent (2) with σ=0.25. These stretch-exponents distributions were 
observed by us and described in the chapter of this paper “Distribution of citation of individual 
authors”.   
The same procedure in case of three clearly existed “coordinates” provides cumulative 
distribution 
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𝑊!(𝑦) = exp − 𝑦!                                                     (8) 
The same conduction for power-law tailed stretch exponential distributions should take into 
consideration the power exponents in tails for original distributions of “scientific significance” 
etc., and needs the volumetric calculations.  

Conclusion  
The 4-parametric family of functions representing the stretch exponential distribution for small 
and medium values of the argument combined with a power-law asymptotic tail, along with 
various transitions between these two parts, is introduced. These functions are demonstrated as 
good fits of the available empirical data for the cumulative distribution of citations to individual 
scientists.  
Abstracting from the co-authoring of a cited paper, one may conclude that these cumulative 
distributions of papers of individual authors versus their citations have character of stretch 
exponent for small and moderate values of citations, and power-law form for asymptotic part. It 
looks that the “power of stretch”, i.e. the introduced coefficient σ depends on the total number of 
citations, moreover, this coefficient starts from ½ (i.e. distributions start from normal exponent) 
and becomes smaller with an increase of the total number of citations. The power-law force 
becomes smaller in return. 
The first attempt to explain the “main body” of distributions (stretch exponents) is provided.  
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