

Citation Distribution of Individual Scientist: Approximations of Stretch Exponential Distribution with Power Law Tails

O.S. Garanina and M.Yu. Romanovsky¹

¹*slon@kapella.gpi.ru*

A.M.Prokhorov General Physics Institute of RAS, Vavilov str., 38, 119991 Moscow (Russia)

Abstract

A multi-parametric family of stretch exponential distributions with various power law tails is introduced and is shown to describe adequately the empirical distributions of scientific citation of individual authors. The four-parametric families are characterized by a normalization coefficient in the exponential part, the power exponent in the power-law asymptotic part, and the coefficient for the transition between the above two parts. The distribution of papers of individual scientist over citations of these papers is studied. Scientists are selected via total number of citations in three ranges: 10^2 - 10^3 , 10^3 - 10^4 , and 10^4 - 10^5 of total citations. We study these intervals for physicists in ISI Web of Knowledge. The scientists who started their scientific publications after 1980 were taken into consideration only. It is detected that the power coefficient in the stretch exponent starts from one for low-cited authors and has to trend to smaller values for scientists with large number of citation. At the same time, the power coefficient in tail drops for large-cited authors.

One possible explanation for the origin of the stretch-exponential distribution for citation of individual author is done.

Conference topic

Citation and co-citation analysis

Introduction

The discussion of how citations of individual authors are distributed has a long history going back even to E. Garfield (1955). In general, there are two points of view on this: the distribution of papers of each scientist is a so-called stretch exponent $W \sim \exp(-x^\alpha/T)$, where x is the number of citations, T is some normalization, α is the power exponent coefficient (Redner, 1998; Laherrere & Sornette, 1998). Usually α is considered as 0,3-0,5 (Redner, 1998, Iglesias & Pecharroman, 2006). A slightly more complicated distribution was introduced by (Tsallis & de Albuquerque, 2000).

The second point is that the above distribution has power-law (Pareto, Zipf) character, i.e. $W \sim x^{-\beta}$ where β is the power (Silagadze, 1999; Vazquez 2001; Lehmann et al., 2003). Often, this dependence is treated as the asymptote (tail) of distribution for comparably large x . In this case, the main body is considered as log-normal (Redner, 2005; Stanley, 2010). It should be noted that there are more complicated models of citation distribution.

The idea of our work is to consider the citation distribution of individual scientists taking into account that the distributions for “various-ranking” scientists can be different. Also, it is interesting to join the above stretch-exponential distributions and power-law distributions: observation of tails of citation distributions of individual scientists often demonstrates a presence of small number of extremely-high cited articles, while other articles of considered scientists can be cited much more moderately. From this point of view, the consideration of citation data of a large set of authors (like in (Redner, 1998) etc.) provides rough enough results. Thus, we concentrate on analysis of citation distributions of individual scientists, taking into account some differences in the total number of citations of each. The cumulative distribution of the number of articles with some or larger number of citations will be analyzed.

Of course, the proposed approach is rough enough, since it does not take into account the co-authoring of cited articles. The authors think that it should be considered in further studies in case of wide scientific interest.

The descriptive model is based on our previous works for tailed distributions: Gauss for stock return distributions (Romanovsky & Vidov, 2011), and exponential Boltzmann distribution for new car sells, incomes and weights (Romanovsky & Garanina, 2015). The authors do not know consistently introduced mathematical formulae for distributions with exponential main part and power law asymptote.

Multi-parametric family of curves with stretch exponential main part and power law tail

To define the general form of the desired distribution, one may proceed from the results presented in (Romanovsky & Vidov, 2011) as a starting point. According to (Romanovsky & Vidov, 2011), the sum of a large quantity N of random values similarly distributed with the probability density function (PDF) of the Student's (generally, non-integer) type $\sim z_0^{2\beta}/(z_0^2 + f^2)^{\beta}$ has the distribution of the Gaussian form for comparably small values of fluctuations f :

$$W_G(f) \approx \frac{1}{\sqrt{\pi}} \exp(-f^2)$$

and $\sim 1/f^{2\beta}$ for large f (z_0 being a normalization constant, the sum is treated as random walks in (Romanovsky & Vidov, 2011)). The obvious mathematical generalization to get the exponential part with power-law tail is to perform the transformation $f \rightarrow R/T$ (here T can be interpreted as an effective “temperature”). Upon switching from parameters N, z_0, β to parameters $\theta, T, \sigma\beta$, the transformation yields the curve with the stretch exponential main part and a transition to power law at the tail in an explicit form of a PDF (Romanovsky & Garanina, 2015):

$$W_{T(\sigma\beta)\theta}(R) = \frac{1}{\sqrt{\pi T}} \int_0^\infty \cos(xR^\sigma) \left\{ \frac{2}{\Gamma(\beta-1/2)} \left[(\beta-3/2) \frac{xT}{4\theta} \right]^{\beta/2-1/4} K_{\beta-1/2} \left[\sqrt{(\beta-3/2) \frac{xT}{4\theta}} \right] \right\}^\theta dx \quad (1)$$

Here R is variable, Γ is the gamma-function, $K_{\beta-1/2}$ is the modified Bessel function of the 2nd kind (also known as “McDonald function”).

The approximation of Eq. (1) for comparably small R (up to several units of $T^{1/2\sigma}$) is easily reduced to only a dependence on parameter T

$$W_T(R) \approx \frac{1}{T} \exp\left(-\frac{R^{2\sigma}}{T}\right) \quad (2)$$

The general drop off law for $W_{T\beta\theta}$ in the case of large R is $R^{-\beta\sigma}$. The parameter θ describes transition among (stretch) exponential and power-law part of (1). This transition goes under larger R (and smaller values of $W_{T(\sigma\beta)\theta}$) under larger values of θ .

To obtain a general form of W , note that

$$I_\beta(x) = \frac{2}{\Gamma(\beta-1/2)} \left[(\beta-3/2) \frac{xT}{4\theta} \right]^{\beta/2-1/4} K_{\beta-1/2} \left[x \sqrt{(\beta-3/2) \frac{T}{\theta}} \right], \quad (3)$$

It is easy to see that it is a monotonic function of β . Indeed, if $\nu = \mu + 1$, one finds, considering the rule for modified Bessel functions of the 2nd kind, that the ratio $I_\mu(x)/I_\nu(x)$ becomes

$$\frac{I_\mu(y)}{I_\nu(y)} = \frac{K_{\mu+1/2}(y) - K_{\mu-3/2}(y)}{K_{\mu+1/2}(y)} = 1 - \frac{K_{\mu-3/2}(y)}{K_{\mu+1/2}(y)} < 1$$

Furthermore, $\forall \eta : \nu > \eta > \mu$, and one finds that $I_\nu > I_\eta > I_\mu$. Thus, it is not necessary to investigate (1,3) with an arbitrary β . It is enough to consider the integer $\beta = 2, 3, \dots$, while integrals with intermediate β will be “locked” among integrals with neighboring integers β that are expressed by means of elementary functions. Then $n = \beta - 1$,

$$K_{\beta-1/2} \left[x \sqrt{(\beta-3/2) \frac{T}{\theta}} \right] = K_{n+1/2} = \sqrt{\frac{\pi}{2x \sqrt{(\beta-3/2) \frac{T}{\theta}}}} \sum_{k=0}^n \frac{(n+k)!}{k!(n-k)! \left[2x \sqrt{(\beta-3/2) \frac{T}{\theta}} \right]^k} \quad (4)$$

The three functions $W_{T(\sigma\beta)\theta}$ for $\sigma\beta = 2, 1, 0.8$ are:

$$W_{T(\sigma\beta)\theta}(R) = \frac{1}{\sqrt{\pi T}} \int_0^\infty \cos(xR^{\sigma\beta}) \exp\left(-x\sqrt{\frac{\theta T}{2}}\right) \left(1 + x\sqrt{\frac{T}{2\theta}}\right)^\theta dx \quad (5)$$

We used here the simplest form of the function (1) for $\beta=2$ for the following approximations of empirical data. The functions $W_{T(\sigma\beta)\theta}$ for $\sigma=0.5, 0.25, 0.2$ are shown in Fig.1. It is seen as a well-coincidence of general functions with corresponding approximation exponents for comparably small values of variable R .

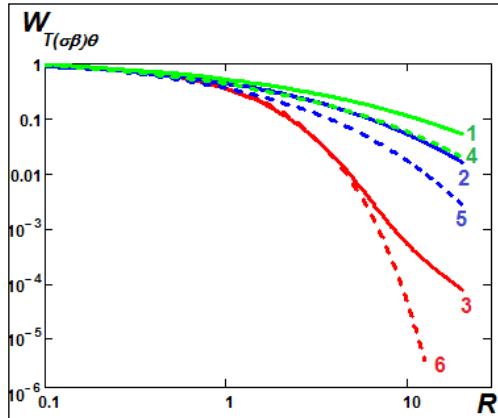


Figure 1. Functions $W_{T(\sigma\beta)\theta}$ for $\beta=2$ and $\sigma=0.5$ (curve 3), $\sigma=0.25$ (curve 2), $\sigma=0.2$ (curve 1) for comparably small R . The straight lines (4-6) are exponents $\exp(-R^{2\sigma}/T)$ for $\sigma=1, 0.5, 0.4$, respectively. Here $T=1$, $\theta=300$.

For large R , these functions drop off as R^{-2} , R^{-1} , $R^{-0.8}$, respectively (see Fig.2):

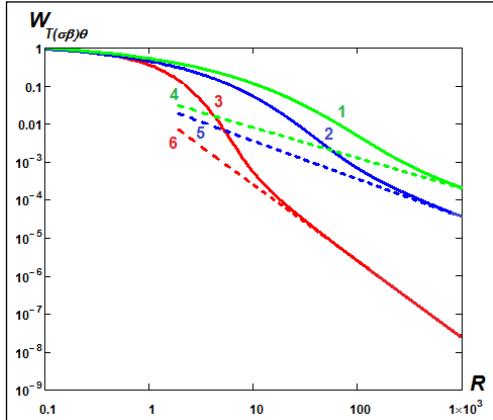


Figure 2. Functions $W_{T(\sigma\beta)\theta}$ for the same β and σ (curves 3-1) as on Fig.1. Hyperboles $R^{-\beta\sigma}$ (straight lines 6-4 on double-logarithmic plot) have $\sigma=0.5, 0.25$, and 0.2 (curve 4), respectively. Parameters T, θ are the same as on Figure 1.

Thus the introduced function (1) well-describes the stretch exponent for small (and moderate) values of argument, and provides power-law asymptotes for large R . We used these functions in the next section.

Distribution of citation of individual authors

It was found that the distributions of citations of individual authors are different. It can be expected due to, for example “Matthew effect” (see Bonitz et al., 1997; Bonitz & Scharnhorst, 2001; Stanley, 2010). One may expect that scientists with total number of citation in range 10^2 - 10^3 , 10^3 - 10^4 , and 10^4 - 10^5 have different distributions of citations. Let us call the scientists with total number of citations in these ranges as the “first-type scientist”, etc. We study these intervals for physicists in the ISI Web of Knowledge. The scientists who started their scientific publications

after 1980 were taken into consideration only. We took 20 scientists for the first two ranges, and several scientists for the third. Typical examples of citation distributions are presented below on Figs. 3-5.

On Fig. 3, the cumulative citation distribution (i.e. the number of articles with citations larger than the value R) for experienced scientists with total number of citations in the first range 10^2 - 10^3 is presented:

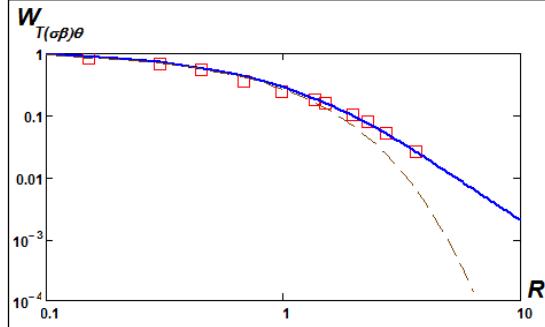


Figure 3. The distribution of articles over citations for the first-type scientist. Open squares are empirical points, the solid curve is $W_{T(\alpha\beta)\theta}$ (5) for $\beta=2$, $\sigma=0.5$, $T=6.5$, $\theta=10$, dashed line is an exponent (2) with $\sigma=0.5$, $T=6.5$.

The function $W_{T(\alpha\beta)\theta}$ on Fig.3 is normalized on total number of articles of the first-type scientists in ISI Web of Knowledge. The variable R is the number of citations normalized on T that is the mean citation of this author. It is seen that the function $W_{T(\alpha\beta)\theta}$ (5) well describes the empirical data, the clear difference from the exponent (2) is on-site. At the same time, the total exit on the asymptotic curve $\sim R^{-2}$ does not realize. The last was observed for other-types scientists.

The citation distribution of the second-type scientist (this is a range of world well-known person) is demonstrated on Fig. 4:

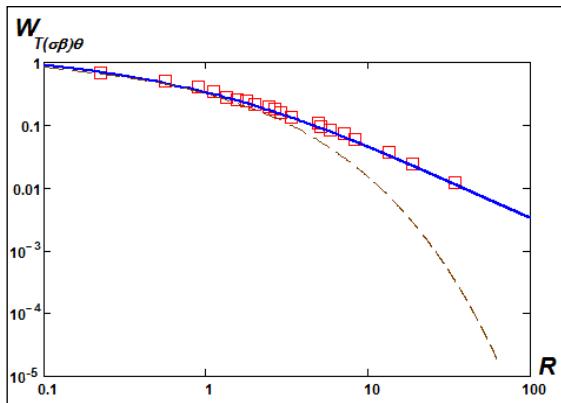


Figure 4. The distribution of articles over citations for the second-type scientist. Open squares are empirical points, the solid curve is $W_{T(\alpha\beta)\theta}$ (5) for $\beta=2$, $\sigma=0.25$, $T=47.4$, $\theta=5$, dashed line is an exponent (2) with $\sigma=0.25$, $T=46$.

The normalization of $W_{T(\alpha\beta)\theta}$ on Fig.4 was on total number of articles also. Indeed, the variable R is normalized now on $T^{2\sigma} = (47.4)^{2\sigma} = 6.9$. The “difference” between empirical data as well as function (5) with pure stretch exponent $\exp(-R^{1/2}/T)$ is larger than on Fig.3 for the first-type scientist. The total exit on the asymptotic curve $\sim R^{-1}$ is also not realized.

The citation distribution of the third-type scientist (this is a range of Nobel Prize winners) is demonstrated on Fig. 5:

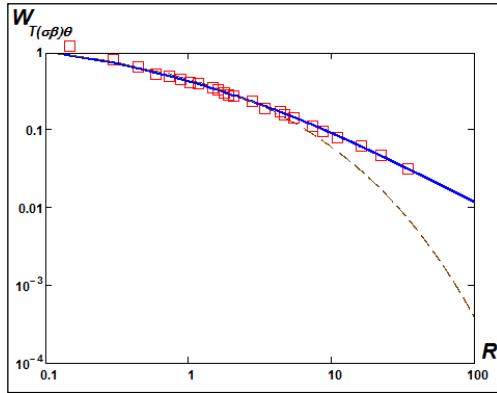


Figure 5. The distribution of articles over citations for the third-type scientist. Open squares are empirical points, the solid curve is $W_{T(\alpha\beta)\theta}$ (5) for $\beta=2$, $\sigma=0.2$, $T=340$, $\theta=5$, dashed line is an exponent (2) with $\sigma=0.2$, $T=340$.

The normalization of $W_{T(\alpha\beta)\theta}$ on Fig.5 is the same, the variable R is normalized now on $T^{2\sigma} = 340^{2\sigma} = 10.3$. It is interesting that all values $T^{2\sigma}$ for all three-types scientists are close to each other and may characterize the citation distribution of individual scientists.

Explanation attempt

Let us try to explain the appearance of stretch exponents in cumulative distribution of such random values like citations. We start from the standard exponential distribution

$$W_1 = \exp(-x) \quad (6)$$

where we used normalization $T=1$ to simplify the following expressions.

How can these calculations be “translated” into the language of citations? The first cause of a citation of some article is the scientific results of this article. Since the author who can potentially cite the above article may find or not find this article, the process of citation due to the scientific significance looks like the two-body exchange (of information in this case) and is provided by distribution (6). Thus it may be that the basic cumulative distribution of citations arises due to the scientific significance of the article and looks like (6).

There are clear additional independent causes for citations. One of them is the name of author (or one of authors in case of co-authoring) of a potentially cited article. It may be the name of scientist in the group that works in the same area of science studied with the author of the cited paper, there arises another causes to cite some scientist. Since this scientist may also be chosen randomly in the process of information exchange, the probability distribution to cite this scientist looks like (6) as well. If now the citation is realized due to two causes: by scientific significance and cited article author, the random value of such citation is the factor of two random values characterized by distribution (6).

Since the causes for citation are independent, they can be considered as some coordinates. For two cases, they are above “scientific significance” and “author’s name”. The variation of these coordinates here are from small to large scientific significance and from large to small reputation of cited scientist. At the same time, we observe citation as being a principally one-dimensional value: the citation either exists or does not exist. Therefore, all distributions (6) reduce to one dimension. The transformation of coordinates in (7) $x^2 \rightarrow y$ provides than for cumulative distribution function

$$W_2(y) = \exp(-\sqrt{y}) \quad (7)$$

i.e. the main part of stretch exponent (2) with $\sigma=0.25$. These stretch-exponents distributions were observed by us and described in the chapter of this paper “Distribution of citation of individual authors”.

The same procedure in case of three clearly existed “coordinates” provides cumulative distribution

$$W_3(y) = \exp(-\sqrt[3]{y}) \quad (8)$$

The same conduction for power-law tailed stretch exponential distributions should take into consideration the power exponents in tails for original distributions of “scientific significance” etc., and needs the volumetric calculations.

Conclusion

The 4-parametric family of functions representing the stretch exponential distribution for small and medium values of the argument combined with a power-law asymptotic tail, along with various transitions between these two parts, is introduced. These functions are demonstrated as good fits of the available empirical data for the cumulative distribution of citations to individual scientists.

Abstracting from the co-authoring of a cited paper, one may conclude that these cumulative distributions of papers of individual authors versus their citations have character of stretch exponent for small and moderate values of citations, and power-law form for asymptotic part. It looks that the “power of stretch”, i.e. the introduced coefficient σ depends on the total number of citations, moreover, this coefficient starts from $\frac{1}{2}$ (i.e. distributions start from normal exponent) and becomes smaller with an increase of the total number of citations. The power-law force becomes smaller in return.

The first attempt to explain the “main body” of distributions (stretch exponents) is provided.

Acknowledgements

The paper is support by RFBR grant 13-07-00672.

References

Bonitz, M., Brukner, E., & Scharnhorst, A. (1997). Characteristics and impact of Matthew effect for countries. *Scientometrics*, 40, 407-422.

Bonitz, M., & Scharnhorst, A. (2001). Competition in science and the Matthew core journals. *Scientometrics*, 51, 37-54.

Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. *Science*, 122, 108–111.

Iglesias, J.E., & Pecharroman, C. (2006). Scaling the h-Index for Different Scientific ISI Fields. Online: <http://arxiv.org/ftp/physics/papers/0607/0607224.pdf>

Laherrere, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales. *The European Physical Journal B*, 2, 525-539.

Lehmann, S., Lautrup, B., & Jackson, A.D. (2003). Citation networks in high energy physics. *Physics Review E*, 68, 026113.

Petersen, A.M., Fengzhong Wang, & Stanley, H.E. (2010). Methods for measuring the citations and productivity of scientists across time and discipline. *Physics Review E*, 81, 036114.

Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. *The European Physical Journal B*, 4, 131-134.

Redner, S. (2005). Citation statistics from 110 years of Physical Review. *Physics Today*, 58, 49–54.

Romanovsky, M.Yu., & Vidov, P.V. (2011). Analytical representation of stock and stock-indexes returns: Non-Gaussian random walks with various jump laws. *Physica A*, 390, 3794–3805.

Romanovsky, M.Yu., & Garanina, O.S. (2015). New multi-parametric analytical approximations of exponential distribution with power law tails for new cars sells and other applications. *Physica A*, 427, 1-9.

Silagadze, Z.K. (1999). Citations and the Zipf-Mandelbrot’s law, <http://arXiv.org/abs/physics/9901035v2>

Tsallis, C., & de Albuquerque, M.P. (2000). Are citations of scientific papers a case of nonextensivity? *The European Physical Journal B*, 13, 777-780.

Vazquez, A. (2001). Statistics of citation networks. *E-prints arXiv:condmat/0105031*.