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Abstract

A multi-parametric family of stretch exponential distributions with various power law tails is introduced and is
shown to describe adequately the empirical distributions of scientific citation of individual authors. The four-
parametric families are characterized by a normalization coefficient in the exponential part, the power exponent
in the power-law asymptotic part, and the coefficient for the transition between the above two parts. The
distribution of papers of individual scientist over citations of these papers is studied. Scientists are selected via
total number of citations in three ranges: 10*-10°, 10°-10%, and 10*-10° of total citations. We study these intervals
for physicists in ISI Web of Knowledge. The scientists who started their scientific publications after 1980 were
taken into consideration only. It is detected that the power coefficient in the stretch exponent starts from one for
low-cited authors and has to trend to smaller values for scientists with large number of citation. At the same
time, the power coefficient in tail drops for large-cited authors.

One possible explanation for the origin of the stretch-exponential distribution for citation of individual author is
done.

Conference topic
Citation and co-citation analysis

Introduction

The discussion of how citations of individual authors are distributed has a long history going back
even to E. Garfield (1955). In general, there are two points of view on this: the distribution of
papers of each scientist is a so-called stretch exponent W ~ exp(—x%*/T) , where x is the number
of citations, 7 is some normalization, a is the power exponent coefficient (Redner, 1998;
Laherrere & Sornette, 1998). Usually a is considered as 0,3-0,5 (Redner, 1998, Iglesias &
Pecharroman, 2006). A slightly more complicated distribution was introduced by (Tsallis & de
Albuquerque, 2000).

The second point is that the above distribution has power-law (Pareto, Zipf) character, i.e. W ~ x”
where f is the power (Silagadze, 1999; Vazquez 2001; Lehmann et al.,, 2003). Often, this
dependence is treated as the asymptote (tail) of distribution for comparably large x. In this case,
the main body is considered as log-normal (Redner, 2005; Stanley, 2010). It should be noted that
there are more complicated models of citation distribution.

The idea of our work is to consider the citation distribution of individual scientists taking into
account that the distributions for “various-ranking” scientists can be different. Also, it is
interesting to join the above stretch-exponential distributions and power-law distributions:
observation of tails of citation distributions of individual scientists often demonstrates a presence
of small number of extremely-high cited articles, while other articles of considered scientists can
be cited much more moderately. From this point of view, the consideration of citation data of a
large set of authors (like in (Redner, 1998) etc.) provides rough enough results. Thus, we
concentrate on analysis of citation distributions of individual scientists, taking into account some
differences in the total number of citations of each. The cumulative distribution of the number of
articles with some or larger number of citations will be analyzed.

Of course, the proposed approach is rough enough, since it does not take into account the co-
authoring of cited articles. The authors think that it should be considered in further studies in case
of wide scientific interest.
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The descriptive model is based on our previous works for tailed distributions: Gauss for stock
return distributions (Romanovsky & Vidov, 2011), and exponential Boltzmann distribution for
new car sells, incomes and weights (Romanovsky & Garanina, 2015). The authors do not know
consistently introduced mathematical formulae for distributions with exponential main part and
power law asymptote.

Multi-parametric family of curves with stretch exponential main part and power law
tail

To define the general form of the desired distribution, one may proceed from the results presented
in (Romanovsky & Vidov, 2011) as a starting point. According to (Romanovsky & Vidov, 2011),
the sum of a large quantity N of random values similarly distributed with the probability density
function (PDF) of the Student’s (generally, non-integer) type ~ zy”/(zs" + )% has the distribution
of the Gaussian form for comparably small Values of fluctuations f:

We(f) = \/——eXp( e

and ~ 1/f  for large f(zy being a normalization constant, the sum is treated as random walks in
(Romanovsky & Vidov, 2011)). The obvious mathematical generalization to get the exponential
part with power-law tail is to perform the transformation f*—R/T (here T can be interpreted as an
effective “temperature”). Upon switching from parameters N, z), f to parameters 6, T, gf}, the
transformation yields the curve with the stretch exponential main part and a transition to power
law at the tail in an explicit form of a PDF (Romanovsky & Garanina, 2015):
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Here R is variable, I' is the gamma—functlon, Kj.1/2 s the modified Bessel function of the 2" kind
(also known as ‘“McDonald function’’).
The approximation of Eq. (1) for comparably small R (up to several units of 77%%) is easily
reduced to only a dependence on parameter T
RZO‘
Wr(R) = ~exp (- ) 2)
The general drop off law for Wrg in the case of large R is R”’. The parameter 6 describes

transition among (stretch) exponential and power-law part of (1). This transition goes under larger
R (and smaller values of Wy, g g) under larger values of 6.

To obtain a general form of W, note that
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It is easy to see that it is a monotonic function of 4. Indeed, if v=u+1, one finds, considering the
rule for modified Bessel functions of the 2™ kind, that the ratio Iﬂ(x)/lv(x) becomes

L(y) KM;',-: () - Kﬂ_s,-2 o) - ) L,
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Furthermore, Vi : v >n > u, and one ﬁnds that 1,>1,>1,. Thus it is not necessary to investigate
(1,3) with an arbitrary f. It is enough to consider the integer = 2, 3, . . ., while integrals with

intermediate £ will be ‘‘locked’” among integrals with neighboring integers [ that are expressed
by means of elementary functions. Then n=4-1,
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The three functions Wy for of=2, 1, 0.8 are:
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We used here the simplest form of the function (1) for f=2 for the following approximations of
empirical data. The functions Wr.p for o= 0.5, 0.25, 0.2 are shown in Fig.1. It is seen as a well-
coincidence of general functions with corresponding approximation exponents for comparably
small values of variable R.
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Figure 1. Functions Wy for =2 and ¢=0.5 (curve 3), 6=0.25 (curve 2), 6=0.2 (curve 1) for
comparably small R. The straight lines (4-6) are exponents exp(—RZ"/T ") for 6=1,0.5,0.4,
respectively. Here 7=1, 6=300.

For large R, these functions drop offas R, R, R*®  respectively (see Fig.2):
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Figure 2. Functions Wy for the same # and o (curves 3-1) as on Fig.1. Hyperboles R-ﬂ ’
(straight lines 6-4 on double-logarithmic plot) have 6=0.5, 0.25, and 0.2 (curve 4), respectively.
Parameters 7, 6 are the same as on Figure 1.

Thus the introduced function (1) well-describes the stretch exponent for small (and moderate)
values of argument, and provides power-law asymptotes for large R. We used these functions in
the next section.

Distribution of citation of individual authors

It was found that the distributions of citations of individual authors are different. It can be
expected due to, for example “Matthew effect” (see Bonitz et al., 1997; Bonitz & Scharnhorst,
2001; Stanley, 2010). One may expect that scientists with total number of citation in range 10*-
10°, 10°-10*, and 10*-10° have different distributions of citations. Let us call the scientists with
total number of citations in these ranges as the “first-type scientist”, etc. We study these intervals
for physicists in the ISI Web of Knowledge. The scientists who started their scientific publications
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after 1980 were taken into consideration only. We took 20 scientists for the first two ranges, and
several scientists for the third. Typical examples of citation distributions are presented below on
Figs. 3-5.
On Fig. 3, the cumulative citation distribution (i.e. the number of articles with citations larger than
the value R) for experienced scientists with total number of citations in the first range 10%-10° is
presented:

0.1 1 10

Figure 3. The distribution of articles over citations for the first-type scientist. Open squares are
empirical points, the solid curve is Wrgp0 (5) for p=2, 6=0.5, T=6.5, 6=10, dashed line is an
exponent (2) with ¢=0.5, 7=6.5.

The function Wrpe on Fig.3 is normalized on total number of articles of the first-type scientists
in ISI Web of Knowledge. The variable R is the number of citations normalized on 7 that is the
mean citation of this author. It is seen that the function Wr,pe (5) well describes the empirical
data, the clear difference from the exponent (2) is on-site. At the same time, the total exit on the
asymptotic curve ~ R does not realize. The last was observed for other-types scientists.

The citation distribution of the second-type scientist (this is a range of world well-known person)
is demonstrated on Fig. 4:
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Figure 4. The distribution of articles over citations for the second-type scientist. Open squares
are empirical points, the solid curve is Wy (5) for f=2, 6=0.25, T=47.4, 6=5, dashed line is an
exponent (2) with 6=0.25, 7=46.

The normalization of Wripe on Fig.4 was on total number of articles also. Indeed, the variable R
is normalized now on 77 = (47.4)” = 6.9. The “difference” between empirical data as well as
function (5) with pure stretch exponent exp(-R"?/T) is larger than on Fig.3 for the first-type
scientist. The total exit on the asymptotic curve ~ R is also not realized.

The citation distribution of the third-type scientist (this is a range of Nobel Prize winners) is
demonstrated on Fig. 5:
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Figure 5. The distribution of articles over citations for the third-type scientist. Open squares are
empirical points, the solid curve is Wy (5) for f=2, 6=0.2, 7=340, 0=5, dashed line is an
exponent (2) with ¢=0.2, 7=340.

The normalization of Wrsp on Fig.5 is the same, the variable R is normalized now on 7°% = 340
= 10.3. It is interesting that all values 7°° for all three-types scientists are close to each other and
may characterize the citation distribution of individual scientists.

Explanation attempt

Let us try to explain the appearance of stretch exponents in cumulative distribution of such
random values like citations. We start from the standard exponential distribution

Wy = exp(—x) (6)
where we used normalization 7=1 to simplify the following expressions.
How can these calculations be “translated” into the language of citations? The first cause of a
citation of some article is the scientific results of this article. Since the author who can potentially
cite the above article may find or not find this article, the process of citation due to the scientific
significance looks like the two-body exchange (of information in this case) and is provided by
distribution (6). Thus it may be that the basic cumulative distribution of citations arises due to the
scientific significance of the article and looks like (6).
There are clear additional independent causes for citations. One of them is the name of author (or
one of authors in case of co-authoring) of a potentially cited article. It may be the name of
scientist in the group that works in the same area of science studied with the author of the cited
paper, there arises another causes to cite some scientist. Since this scientist may also be chosen
randomly in the process of information exchange, the probability distribution to cite this scientist
looks like (6) as well. If now the citation is realized due to two causes: by scientific significance
and cited article author, the random value of such citation is the factor of two random values
characterized by distribution (6).
Since the causes for citation are independent, they can be considered as some coordinates. For two
cases, they are above “scientific significance” and ‘“author’s name”. The variation of these
coordinates here are from small to large scientific significance and from large to small reputation
of cited scientist. At the same time, we observe citation as being a principally one-dimensional
value: the citation either exists or does not exist. Therefore, all distributions (6) reduce to one
dimension. The transformation of coordinates in (7) x° —y provides than for cumulative
distribution function

W, (y) = exp(—/y) (7)
i.e. the main part of stretch exponent (2) with 6=0.25. These stretch-exponents distributions were
observed by us and described in the chapter of this paper “Distribution of citation of individual
authors”.
The same procedure in case of three clearly existed “coordinates” provides cumulative
distribution
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W3(y) = exp(—1/y) (8)
The same conduction for power-law tailed stretch exponential distributions should take into

consideration the power exponents in tails for original distributions of “scientific significance”
etc., and needs the volumetric calculations.

Conclusion

The 4-parametric family of functions representing the stretch exponential distribution for small
and medium values of the argument combined with a power-law asymptotic tail, along with
various transitions between these two parts, is introduced. These functions are demonstrated as
good fits of the available empirical data for the cumulative distribution of citations to individual
scientists.

Abstracting from the co-authoring of a cited paper, one may conclude that these cumulative
distributions of papers of individual authors versus their citations have character of stretch
exponent for small and moderate values of citations, and power-law form for asymptotic part. It
looks that the “power of stretch”, i.e. the introduced coefficient o depends on the total number of
citations, moreover, this coefficient starts from 2 (i.e. distributions start from normal exponent)
and becomes smaller with an increase of the total number of citations. The power-law force
becomes smaller in return.

The first attempt to explain the “main body” of distributions (stretch exponents) is provided.
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