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Abstract 
Many existing metrics to evaluate scholars consider their scientific impact without considering the importance of 
breadth of research. In this paper, we define a new metric for breadth of research based on the generalized 
Stirling metric that considers multiple aspects of breadth of research.  We extract research topics in computer 
science using concept extraction and clustering from the literature in the ACM dataset. We then assign authors a 
distribution over these research topics, from which we calculate scores of breadth of research for each author. 
We design five simulation experiments that evaluate the ability of a metric to measure breadth of research and 
use these experiments to compare our new metric to traditional metrics. The results show how these metrics 
perform in different experiments, concluding that no metric consistently outperforms the others. We test the 
relationship between our new metric and scientific impact and find a weak correlation between them. Finally, we 
find that the variation of the metric over time illustrates a possible publication pattern for scholars. 

Conference Topic 
Indicators 

Introduction 
An increasing number of scholars are engaged in interdisciplinary research (Porter, Cohen, 
David Roessner, & Perreault, 2007; Wagner et al., 2011).  Some of this is due to the 
emergence of new scholarly “disciplines” that are inherently multi-disciplinary such as 
information science, while some arises from scientific problems such as climate change that 
require expertise from multiple fields.  Meanwhile, scholarly impact and influence continues, 
by and large, to be measured by indices that ignore breadth of research and may even penalize 
scholars who diversify their research portfolio.  For example, H-index, which is used 
extensively to measure scholarly impact, and which has been criticized for its limited focus 
(Weingart, 2005), may be unfair when comparing scholars with different degrees of breadth 
of research.  Ultimately, a metric or a set of metrics is needed that accounts for breadth of 
research, so that breadth of research can be measured and be included in an evaluation system 
of scholars' scientific influence. 
In this paper we describe research that explores the area of scholarly impact metrics and 
breadth of research. The contributions of our work are as follows.  We design a new metric to 
measure scholars' breadth of research that builds on traditional metrics. We develop a multi-
stage method for extracting topics from a corpus (in our case computer science papers) and 
calculate the scores of breadth of research for authors who have published papers in computer 
science conferences. We design five simulation experiments that compare the relative 
performance of existing metrics and our new metric for measuring breadth of research.   We 
measure the relationship of breadth of research and H-index for scholars who are authors in 
our corpus.  Finally, we explore the variation of breadth of research for scholars over time to 
observe their paper publication behavior over their careers. 
The structure of this paper is as follows. The next section describes related work in the areas 
relevant to our work. Following that, we report on the dataset we used in our research.  We 
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then describe our process of dictionary extraction, topic extraction, paper assignment and 
author assignment to topics. In the subsequent section we illustrate our new metric and 
compare it to traditional metrics. The penultimate section describes simulation experiments to 
show the performance of the new metric, the relationship between the new metric and metrics 
of research impact, and the variation over time of breadth of research for scholars. Our 
conclusions and possible future work are listed in the final section. 

Related Work 
There is a variety of existing literature relevant to the area of breadth of research. The areas 
covered by this literature include topic extraction, topic relationship extraction, metrics design 
and the relationship between different aspects of research evaluation systems.  
There are many methods to associate topics to publication. The simplest one is to use the 
classification codes in a dataset, such as ISI subject categories in Web of Science, as the set of 
topics. But these categories are too coarse-grained and hide intra-disciplinary variability. 
Another method is to use unsupervised learning algorithms to extract some topics according 
to the content of papers or the citation network of papers. Topic modelling (Blei, Ng, & 
Jordan, 2003) is one of the popular unsupervised learning algorithms based on content of 
papers. This model has been used to identify the disciplines that comprise interdisciplinary 
work funded by NSF (Nichols, 2014). The ACT model (author-conference-topic) (Li et al., 
2010) is an adaptation of Blei's model. Another approach is to use community detection in 
networks as a basis for finding topics. One example is the use of two-round clustering 
(Rosvall & Bergstrom, 2008) over the citation network to extract topic-associated 
communities (Velden & Lagoze, 2013). Another method using both the citation network and 
the word distribution of abstracts (Jo, Hopcroft, & Lagoze, 2011) finds temporally-ordered 
topics from a corpus of scientific literature, such as the ACM dataset.   
Understanding the relationship between topics is also an important step after topic extraction, 
because the calculation of the similarity of topics is necessary for understanding the breadth 
of research. Some researchers have extracted the relationships and used information 
visualization techniques to represent the relationship between different topics. For example, 
Yan (2013) detects the path between different disciplines to find the evolution of some areas. 
Another paper describes a new method to find the diversity subgraph in a multidisciplinary 
scientific collaboration network (He, Ding, Tang, Reguramalingam, & Bollen, 2013). An 
interesting visualization method leverages the circle of science to visualize the relationship 
between disciplines in one dimension (Boyack & Klavans, 2009).  
Many metrics have been designed to measure factors related to scientific influence. The most 
common metrics are impact factor and H-index, which measure the number of citations of 
scholars' papers. Although these metrics have many problems such as lack of universality 
between different disciplines (Kaur, Radicchi, & Menczer, 2013), they are still widely used in 
systems like Google Scholar. Some alternative metrics also use the number of citations to 
measure the scientific influence of scholars (Ruscio, Seaman, D’Oriano, Stremlo, & 
Mahalchik, 2012). They offer advantages over simple metrics such as H-index, but they also 
focus solely on the citation count of papers. Other metrics based on the centrality of scholars 
in a network (e.g., co-authorship) like PageRank and betweeness centrality (Bollen, Van de 
Sompel, Hagberg, & Chute, 2009) are also widely used.  However, the correspondence of 
centrality to actual influence is unknown.  
As mentioned earlier, commonly used metrics of scholarly influence fail to consider breadth 
of scholars' research. In response a number of researchers have created some metrics for the 
degree of interdisplinarity and more generally breadth of research. The report of quantitative 
metrics and context in interdisciplinary scientific research (Wagner et al., 2011) is a good 
survey for metrics for interdisciplinarity. Specialization and integration (Porter et al., 2007) 
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are good metrics of interdisciplinarity because they consider similarity between disciplines 
when measuring interdisciplinarity. They can be modified easily in the context of a diversity 
of research topics. Some papers discuss different dimensions of interdisplinarity (Rafols & 
Meyer, 2010; Rafols, Leydesdorff, O’Hare, Nightingale, & Stirling, 2012): diversity, 
coherence and intermediation. They define diversity as a combination of variety, balance and 
disparity. Coherence means link strength between different disciplines. Intermediation is 
based on the network structure and is measured by betweenness centrality, clustering 
coefficient and average similarity.  Other papers describe metrics based on these dimensions. 
Cassi, Mescheba, and de Turckheim (2014) divides the Stirling metric into “within 
component” and “between component” to measure the diversity of articles. Jensen & 
Lutkouskaya (2013) defines six indicators based on the dimensions and measure the breadth 
of research at two levels (article and laboratory). Karlovčec and Mladenić (2014) defines a 
new diversity metric based on Generalized Stirling. The metric incorporates connectedness of 
the citation graph into the original metric and applies it in exploratory analysis of the research 
community in Slovenia. Roessner, Porter, Nersessian, and Carley (2012) validates the 
interdisciplinarity metrics with ethnographic materials (field observations and unstructured 
interviews). 
Finally, some research has focused on the relationship between breadth of research and other 
factors considered in scientometrics (not just scientific influence). One interesting paper finds 
that the papers with an average degree of interdisciplinarity will get higher impact than papers 
with too high or too low degree of interdisciplinarity (Sternitzke & Bergmann, 2008). The 
results are convincing but metrics used in this paper are quite simple (Jaccard similarity and 
cosine similarity). Two papers find that interdisciplinary papers have potentially lower impact 
than more focused papers. One of them finds that multidisciplinary papers are not frequently 
cited in contrast to the disciplinary papers (Levitt & Thelwall, 2008). The other explains how 
high-ranked journals suppress interdisciplinary research (I Rafols & Meyer, 2010). Other 
papers describe some factors that can encourage researchers to be involved in 
interdisciplinary research work (Carayol & Thi, 2005; van Rijnsoever & Hessels, 2011). They 
provide some theories to explain why scholars choose interdisciplinary projects. Some 
findings support that there are no correlations between citation ranks and ranked 
interdisciplinarity indices (Ponomarev, Lawton, Williams, & Schnell, 2014). In contrast, other 
researchers confirm that the degree of interdisciplinarity is strongly correlated with the impact 
factor (Silva, Rodrigues, Oliveira, & da F. Costa, 2013).  

Dataset 
We extract abstracts, full text and other metadata from the ACM digital library for 
proceedings of major conferences in computer science.  From these proceedings we select 
authors whose names are unambiguous and who have published at least five papers. The 
standard for unambiguity is whether using the full name as the query sent to Google Scholar 
returns only one researcher profile with the same name. We extract the citation numbers and 
H-indexes by crawling over Google Scholar. Overall we crawled H-indexes and citation 
numbers for 8911 authors from Google Scholar in August 2014. We also used the Wikipedia 
dataset to extract important terms in computer science. 

Topic Extraction and Assignment 
Both traditional metrics and the new metric designed in this paper require a distribution over 
different topics or areas for authors. In order to generate topic distributions, we leverage the 
text data in the papers of ACM digital library and implement three steps to form distributions: 
dictionary extraction, topic extraction and author assignment. 
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Dictionary Extraction 
How to define topics is the first problem to be solved in the topic extraction and assignment. 
In our work, we extract a dictionary of n-grams in computer science and cluster them into 
topics using the Affinity Propagation algorithm (Frey & Dueck, 2007). Three different 
sources of dictionaries are used in this paper: grams that are frequently used in papers, grams 
that can be matched to their abbreviations in the papers, and entries in Wikipedia. 
Dictionary extraction follows these steps: 

1. Extract bigrams and trigrams that occur frequently in papers using a threshold of more 
than 10 times for bigrams and more than 5 times for trigrams. The threshold helps to 
eliminate noisy grams with low frequency. 

2. Extract grams from papers that conform to the pattern "n-grams (abbreviation)", e.g. 
machine learning (ML). 

3. Intersect the results of step 1 and step 2 (3816 terms in total). 
4. Build a network of entries in Wikipedia according to hyperlinks between them in the 

website. 
5. Make use of grams in step 3 and search their neighbours in the network of Wikipedia 

terms. If their neighbours also occur frequently in papers (with frequency higher than 
the thresholds mentioned above), add the terms into the final dictionary  (6100 terms) 

The top 5 bigrams and top 5 trigrams in the final dictionary are shown in Table 1: 
Table 1. Grams with top frequency 

Grams Frequency 
User Interface 2372 
Software development 2102 
Programming language 2042 
Software engineering 1988 
Operating system 1761 
Wireless sensor network 586 
World wide web 467 
Graphical user interface 305 
Support vector machine 300 
Discrete event simulation 287 

Topic Extraction and Assignment 
After extracting the dictionary, we count the co-occurrence measure for every pair of terms.   
We then calculate the similarity between different terms by: 

𝑆𝑆𝑆𝑆𝑆𝑆!" = log
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!" + 1

𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶!") + 2
 

The logarithm calculation makes the distribution of similarity more uniform and avoids the 
influence of outliers of co-occurrence numbers. We weight co-occurrences of terms in 
abstracts of papers more than those in full text based on the intuition that abstracts generally 
have a stronger “topic signal”. Using the computed similarity matrix of terms, we then run 
Affinity Propagation to cluster together similar terms and choose an exemplar for every 
cluster. The benefits of Affinity Propagation are that there isn’t a need to parameterize the 
number of clusters and that the exemplars for every cluster provide a straightforward 
explanation of what these clusters are about. More than two hundred clusters, or topics, are 
generated. Here are two examples of the clustering results: 
Exemplar: digital library 
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Terms: 
citation analysis, citation index, community building, digital earth, digital library, digital 
library software, digital preservation, digital reference, discourse analysis, dublin core. 
Exemplar: machine learning 
Terms: 
active learning, adaptive control, bayes classifier, belief propagation, clinical trial, 
computational learning theory , concept learning, conditional random field. 
We then assign every paper a probabilistic assignment to the different topics according to 
their respective frequency of n-grams associated with the particular topic. Therefore, every 
paper will have a distribution over topics. 

Author Assignment 
Using the clusters of grams in computer science and the topic distributions for every paper, 
we assign authors into different topics according to their papers. Every author is represented 
by a distribution over topics, which are used to calculate scores of metrics. There does not 
exist a “gold standard” list of researchers that ranks breadth of research that we can use to 
evaluate how reasonable our topic assignments are. We list below some topic distributions for 
well-known computer scientists to demonstrate our assignment.  
John Koza  
1 genetic programming  0.567 
2 programming language  0.083 
3 knowledge base   0.063 
Peter Denning  
1 memory management  0.107 
2 computer systems   0.093 
3 information systems   0.050 
Eric Horvitz 
1 user interface    0.082 
2 information retrieval  0.067 
3 machine learning   0.051 
4 speech recognition   0.047 

Breadth of Research Measurement 
With the author distribution of topics established, the key question is how to translate this into 
a measure of breadth of research for authors. As mentioned in the section describing related 
work, many metrics have been used to measure the "degree of interdisciplinarity". Compared 
to previous metrics to measure breadth of research, we design a new metric that considers the 
topic distribution, similarity distribution and coherence within research topics. 

Summary of Old Measurements 
There are many measurements of diversity or interdisciplinary, like entropy (Weaver, 1949), 
Simpson's index (Simpsons, 1949) and generalized Stirling (Stirling, 2007). Each of these is 
computed as follows. Denote pi as the probability of topic distribution for an author over topic 
i, dij as the distance between topic i and topic j. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =    −𝑝𝑝!  ×  log!  (𝑝𝑝!)
!

!!!

 

357



	
  
	
  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −   𝑝𝑝!!
!

!!!

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =    𝑑𝑑!"!

!,!

  (𝑝𝑝!×𝑝𝑝!)! 

Comparing them, only generalized Stirling considers not only the distribution of topics but 
also the similarity between topics. The further the distance between topics in which an author 
publishes papers, the more diverse will the author's research interest be. However, the 
traditional metrics do not consider the notion of differing coherence between different 
research topics. And the degrees of influence of topics with small proportions are very 
limited. The new measurement is a modified version of the generalized Stirling metric and it 
incorporates the coherence of topics and value of minor topics (topics with small proportions). 

New Measurement 
The new metric for breadth of research is defined as follows. 
Denote dij as the distance between two topics, which are defined as the average distance 
(inverse of similarity defined above) between terms in the two topics, pi as the probability of 
an author's paper belong to topic i, cohi as the coherence of topic i. Coherence of each topic is 
the proportion of authors for whom the respective topic is their major research topic, which is 
an important signal to illustrate whether a research topic concentrate on some core research 
questions. Parameters 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 are used to control the relative weights of different components. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ  𝑜𝑜𝑜𝑜  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ =    𝑑𝑑!"!

!,!

  (𝑝𝑝! + 𝑝𝑝!)!(𝐶𝐶𝐶𝐶ℎ!  ×  𝐶𝐶𝐶𝐶ℎ!)! 

We modify the product of pi and pj in generalized Stirling to summation of pi and pj because 
the summation will give minor topics more chances to be counted into the measurement of 
breadth of research. We add the coherence term into the metric because different topics have 
different "density" within themselves. For example, some topics like digital library are less 
coherent topics because there are many diverse subtopics in these topics. But for topics like 
operation systems, researchers concentrate on several narrow subtopics. A researcher focusing 
on digital library should have larger breadth of research than operating systems researchers if 
other variables are controlled (so the gamma should have a negative value). 
The new metric leverages properties of papers (topic distribution), properties of topics 
(coherence) and properties of relationship (topic similarity). The tunable parameters give the 
metric more flexibility to balance between different aspects of breadth of research. 

Experiments 

Simulation Experiment 
There is no established standard for determining the quality of metrics of breadth of research. 
Furthermore, there is no ground truth to show the rankings of scholars' breadth of research 
with which to validate the various metrics. We propose an alternative evaluation method 
based on a set of axioms concerning breadth of research and then test how the metrics 
perform according to these axioms.  
In addition to the definition of dij and cohi defined in the previous section, the following 
definitions relate to the axioms. 

• Denote Ai as the article i, C={ A1, A2 ...} as a collection of articles, and NC as the 
number of articles in collection C. 

• Denote ti as the topic i, DA(t) as the topic distribution of article A over topic t. 
( 𝐷𝐷!(𝑡𝑡)   =   1! ) 
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• Denote DC(t) as the topic distribution of collection C over topic t. DC(t) 
= !
!!

𝐷𝐷!!(𝑡𝑡)!!  ∈! . ( 𝐷𝐷!(𝑡𝑡)   =   1! ) 

• Denote score(C) as the score of a metric over the collection of articles C 
Axiom1: Publish in Old Topics 
If an author publishes a paper in a topic in which she has published many papers before, her 
breadth of research should decrease. 
Choose t, s.t.  𝑡𝑡   =   𝑎𝑎𝑎𝑎𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚!  𝐷𝐷!(𝑡𝑡) , construct a new article Anew, s.t. 𝐷𝐷!!"#(𝑡𝑡)   =   1 . 
𝐶𝐶′ = 𝐶𝐶   ∪ {𝐴𝐴!"#} . Then score(C') < score(C). 
Axiom2: Publish in New Topics 
If an author publishes a paper in a new topic in which she has never published, her breadth of 
research should increase. 
Choose t, s.t. DC (t)=0, construct a new article Anew, s.t. 𝐷𝐷!!"#(𝑡𝑡)   =   1, 𝐶𝐶′ = 𝐶𝐶   ∪ {𝐴𝐴!"#}. 
Then score(C') > score(C). 
Axiom3: Publish in New Topics Twice 
If an author publishes papers in two new topics in a sequence, the increase of breadth of 
research in the second time should be smaller than the increase of that in the first time.  
Choose t1 and t2, s.t. DC(t1)=0 , DC (t2)=0 , t1≠t2 ,construct two new articles Anew1 and Anew2, 
s.t. 𝐷𝐷!!"#!(𝑡𝑡)   =   1  and 𝐷𝐷!!"#!(𝑡𝑡)   =   1 . 𝐶𝐶′ = 𝐶𝐶   ∪ {𝐴𝐴!"#!},  𝐶𝐶′′ = 𝐶𝐶′   ∪ {𝐴𝐴!"#!}.   Then 
score(C')-score(C) > score(C'')-score(C'). 
Axiom4: Publish in Close Topics 
If an author publishes a paper in a new topic close to the author's research interest, the 
improvement of her breadth of research should be less than that of publishing a new paper in 
a randomly chosen topic. 
Randomly Choose t1 s.t. DC(t1)=0, construct a new article Anew1, s.t. 𝐷𝐷!!"#!(𝑡𝑡!)   =   1 . 
𝐶𝐶′ = 𝐶𝐶   ∪ {𝐴𝐴!"#!}. Choose t2 s.t. DC(t2)=0 and 𝑎𝑎𝑎𝑎𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚!(𝑖𝑖𝑖𝑖𝑖𝑖!!∈{!|!!(!)!!}𝑑𝑑!!!!). Construct a 
new article Anew2, s.t. 𝐷𝐷!!"#!(𝑡𝑡!)   =   1, 𝐶𝐶′′ = 𝐶𝐶′   ∪ {𝐴𝐴!"#!}. Then score(C'') < score(C') 
Axiom5: Publish in Coherent Topics 
If an author publishes a paper in a new topic with high coherence, the improvement of her 
breadth of research should be less than that of publishing a new paper in a randomly chosen 
topic. 
Randomly Choose t1 s.t. DC(t1)=0, construct a new article Anew1, s.t. 𝐷𝐷!!"#!(𝑡𝑡!)   =   1 . 
𝐶𝐶′ = 𝐶𝐶   ∪ {𝐴𝐴!"#!}.  Choose t2 s.t. DC(t2)=0 and 𝑡𝑡!   =   𝑎𝑎𝑎𝑎𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚!  (𝐶𝐶𝐶𝐶ℎ𝑒𝑒!). Construct a new 
article Anew2, s.t. 𝐷𝐷!!"#!(𝑡𝑡!)   =   1, 𝐶𝐶′′ = 𝐶𝐶′   ∪ {𝐴𝐴!"#!}. Then score(C'') < score(C').  
We implemented five simulation experiments based on the original dataset with 8911 authors 
to test how the traditional metrics and our new metric conform to the axioms. The results are 
shown in Table 2. 

Table 2. Probability that metrics satisfy of the axioms 

 Entropy Simpson’s GL Stirling 
(𝛼𝛼 = 2; 𝛽𝛽 = 0.3) 

New Metric 
(𝛼𝛼 = 1, 𝛽𝛽 = 0.5, 𝛾𝛾 = −0.5) 

Axiom1 0.99 0.99 0.97 0.88 
Axiom2 0.89 0.97 0.86 0.86 
Axiom3 0.97 0.94 0.50 0.50 
Axiom4 0 0 0.76 0.70 
Axiom5 0 0 0.54 0.62 
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The results show that entropy and Simpson's perform well in the first three axioms because 
they don't consider distances between topics and introduce less noise. Because every new 
topic will be regarded equally for these metrics, they cannot follow Axiom4 and Axiom5. 
Generalized Stirling and our metric perform reasonably well in Axiom1 and Axiom2, but 
worse than entropy and Simpson's. They perform relatively badly in Axiom3 because 
relatively bad performance on publishing a paper in new topic (Axiom2) will aggregate when 
testing the performance of publishing two papers in two new topics. But they perform well in 
Axiom4 because of the consideration of distances. Also we find our metric performs better 
than generalized Stirling in Axiom5, which means coherences of topics and greater weights 
on minor topics are beneficial when we consider variation of metrics when people publish in 
topics with different coherence levels. 

Parameter Sensitivity 
The performance of new metric is influenced by the value of parameters 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾.  We 
tested the performance of the new metric with different settings. The results are shown in 
Table 3, Table 4 and Table 5. 

Table 3. Average Prob of satisfying the axioms with different 𝜶𝜶. 

 𝛼𝛼 = 0.1 𝛼𝛼 = 1 𝛼𝛼 = 10 𝛼𝛼 = 100 
Axiom1 0.40 0.42 0.48 0.62 
Axiom2 0.33 0.38 0.44 0.55 
Axiom3 0.34 0.32 0.24 0.22 
Axiom4 0.38 0.57 0.66 0.64 
Axiom5 0.63 0.61 0.57 0.52 

Table 4. Average Prob of satisfying the axioms with different 𝜷𝜷. 

 𝛽𝛽 = 0.1 𝛽𝛽 = 1 𝛽𝛽 = 10 𝛽𝛽 = 100 
Axiom1 0.86 0.67 0.30 0.08 
Axiom2 0.69 0.57 0.24 0.16 
Axiom3 0.40 0.40 0.29 0.05 
Axiom4 0.57 0.57 0.59 0.53 
Axiom5 0.61 0.61 0.59 0.52 

Table 5. Average Prob of satisfying the axioms with different 𝜸𝜸. 

 𝛾𝛾 = 0.1 𝛾𝛾 = 1 𝛾𝛾 = 10 𝛾𝛾 = 100 
Axiom1 0.58 0.47 0.45 0.45 
Axiom2 0.24 0.39 0.47 0.48 
Axiom3 0.09 0.26 0.34 0.38 
Axiom4 0.49 0.57 0.59 0.59 
Axiom5 0.62 0.66 0.58 0.53 

 
The tables show that the metric is very sensitive to the 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾. In order to find the best 
parameter setting, we calculated the average performance over five different simulation 
experiments for every parameter settings. We selected the settings with highest average 
performance and a minimum threshold of at least 0.5 in every experiment. The best setting for 
Generalized Stirling is 𝛼𝛼 = 2, 𝛽𝛽 = 0.3. The best setting for the new metric is  𝛼𝛼 = 1, 𝛽𝛽 = 0.5 
and 𝛾𝛾 = −0.5. They are used in the comparison of metrics in Table 2. 
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Summation Modification 
One of important modifications of our metric is the replacement of product with summation in 
the second term of metric. We test the effect of this.  If we control the distance term and 
coherence term in the metric to be the same for every topic and set 𝛽𝛽 = 1.  The metric using 
summation will definitely follow Axiom2 but not follow Axiom1 and Axiom3. 
Let n represents the number of topic. 
Axiom1: Publish in Old Topics 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶 =    𝑑𝑑!
!,!

  (𝑝𝑝! + 𝑝𝑝!)(coh  ×  coh)! = 𝑛𝑛 − 1 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! 

  =    𝑑𝑑!
!,!

  (𝑝𝑝!′ + 𝑝𝑝!′)(coh  ×  coh)! = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶!  

Axiom2: Publish in New Topics 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶 =    𝑑𝑑!
!,!

  (𝑝𝑝! + 𝑝𝑝!)(coh  ×  coh)! = 𝑛𝑛 − 1 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! 

<    𝑑𝑑!
!,!

  (𝑝𝑝!′ + 𝑝𝑝!′)(coh  ×  coh)! = 𝑛𝑛 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶!  

Axiom3: Publish in New Topics Twice 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶 = 𝑛𝑛 − 1 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶′ = 𝑛𝑛 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶′′ = 𝑛𝑛 + 1 𝑑𝑑!(𝑐𝑐𝑐𝑐ℎ)!! 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶!! − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶! =   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶! − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶) 

From the derivation above, the performance of new metric in Axiom 1 and Axiom 3 should 
be worse than the metric with product. The performance of Axiom 2 should be better than the 
metric with product. So we construct a metric using product in the second term and compare 
the performance of it with the new metric in different parameter settings. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ  𝑜𝑜𝑜𝑜  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ =   𝑑𝑑!"!

!,!

  (𝑝𝑝!×𝑝𝑝!)!(𝐶𝐶𝐶𝐶ℎ!  ×  𝐶𝐶𝐶𝐶ℎ!)! 

The results in Table 6 shows that the metric using summation outperforms product in Axiom 
2, and metric using product outperforms summation in Axiom1, which is consistent with the 
results of derivation. But the results for the other three axioms are close between the two 
metrics, which means the interaction between different terms in the metric (distance term, 
distribution term and coherence term) will influence the results of simulation. 

Table 6. Comparison between metric with summation and production. 

Metric Parameter setting Axiom1 Axiom2 Axiom 3 Axiom4 Axiom5 
Production 𝛼𝛼 = 0.1  𝛽𝛽 = 0.1𝛾𝛾 = −0.1 0.99 0.85 0.45 0.22 0.59 

𝛼𝛼 = 100  𝛽𝛽 = 1𝛾𝛾 = −1 0.82 0.62 0.47 0.69 0.53 
𝛼𝛼 = 1  𝛽𝛽 = 1𝛾𝛾 = −10 0.83 0.40 0.39 0.55 0.76 

Summation 𝛼𝛼 = 0.1  𝛽𝛽 = 0.1𝛾𝛾 = −0.1 0.97 0.89 0.45 0.22 0.59 
𝛼𝛼 = 100  𝛽𝛽 = 1  𝛾𝛾 = −1 0.69 0.69 0.50 0.69 0.55 
𝛼𝛼 = 1  𝛽𝛽 = 1𝛾𝛾 = −1 0.69 0.47 0.41 0.54 0.77 

Relationship between breadth of research and scientific impact 
We tested the Pearson correlation between metrics of breadth of research and H-indexes of 
scholars. Our results (Table 7) show that some metrics have a positive relationship with H-
index. Others have weak negative relationship. Because publication numbers may influence 
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the correlation between breadth of research and scientific impact i.e. the increase of numbers 
of publications may bring increase of breadth of research and increase of H-index 
simultaneously to make them positively correlated to each other, we test the partial correlation 
between metrics of breadth of research to H-index controlling publication numbers (Table 7). 
They are weaker than Pearson correlations. And all the weak partial correlation scores don’t 
illustrate strong correlation between metrics for breadth of research and H-index for scholars. 

Table 7. Correlation between breadth of research and H-index. 

 Pearson Corr. Partial Corr. 
Entropy v.s. H-index -0.1722 -0.0769 
Simpson’s v.s. H-index 0.2102 0.0922 
GL Stirling v.s. H-index 0.4283 0.1820 
New Metric v.s. H-index 0.4337 0.1832 

The Variation of metrics over publication years 
We illustrate in Figure 1 the variation of average scores of metrics for all the scholars over 
publication years. Simpson's, generalized Stirling and our new metric initially increase and 
then level off, which explains a possible publication pattern of scholars: scholars' breadth of 
research may increase with the increase of publications in the early stage of their career. But 
because of accumulation of publications, their accumulative breadth of research will not 
change dramatically in the late years. For the entropy metric with base n, it is normalized by 
topic number. So it keeps in a stable level over year, which shows a different pattern 
compared to other metrics. 
 

 
Figure 1. Variation of metrics over publication years. 

Conclusion and Future Work 
In this paper, we describe a new metric based on generalized Stirling to evaluate breadth of 
research for scholars in computer science. The metric makes use of topic distribution, 
similarity between topics, and coherence of topics and it can capture the diversity aspects of 
breadth of research. The simulation experiments show that traditional metrics can perform 
well in some axiom, but they don't perform well when coherence within topics and similarity 
between topics are considered. In contrast, generalized Stirling metric and the new metric for 
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breadth of research work better in the simulation related to similarity between topics and 
coherences but perform worse in the experiments of adding new topics. It is a trade-off 
between the simplicity of metrics and the concern of topic similarity and coherence.  
With the new metric for breadth of research, we find the correlation between breadth of 
research and scientific metrics are weak, especially when we control publication numbers. 
From our study, there’s no evidence to show whether the increase of breadth of research will 
influence the impact of scholars' publication. Also, after testing the variation of the new 
metric over years, we find a possible publication pattern of scholars: Breadth of research 
increases in the beginning with the increase of publications. But they increase slowly when 
publications have been accumulated. 
There are a number of research questions that arise from the work described in this paper. The 
first one is finding alternative methods to generate research topics. Unsupervised learning 
models based on both text contents and citation information may be helpful to extract topics 
and show topic variation for authors. The second question is how to improve the simulation 
results for the new metric. The new metric performs better than general Stirling and other 
traditional metrics in some aspects. But if more information from co-author and citation 
network can be incorporated into the metric, the performance may be better and interpretable.  
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