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Abstract

Many existing metrics to evaluate scholars consider their scientific impact without considering the importance of
breadth of research. In this paper, we define a new metric for breadth of research based on the generalized
Stirling metric that considers multiple aspects of breadth of research. We extract research topics in computer
science using concept extraction and clustering from the literature in the ACM dataset. We then assign authors a
distribution over these research topics, from which we calculate scores of breadth of research for each author.
We design five simulation experiments that evaluate the ability of a metric to measure breadth of research and
use these experiments to compare our new metric to traditional metrics. The results show how these metrics
perform in different experiments, concluding that no metric consistently outperforms the others. We test the
relationship between our new metric and scientific impact and find a weak correlation between them. Finally, we
find that the variation of the metric over time illustrates a possible publication pattern for scholars.

Conference Topic
Indicators

Introduction

An increasing number of scholars are engaged in interdisciplinary research (Porter, Cohen,
David Roessner, & Perreault, 2007; Wagner et al., 2011). Some of this is due to the
emergence of new scholarly “disciplines” that are inherently multi-disciplinary such as
information science, while some arises from scientific problems such as climate change that
require expertise from multiple fields. Meanwhile, scholarly impact and influence continues,
by and large, to be measured by indices that ignore breadth of research and may even penalize
scholars who diversify their research portfolio. For example, H-index, which is used
extensively to measure scholarly impact, and which has been criticized for its limited focus
(Weingart, 2005), may be unfair when comparing scholars with different degrees of breadth
of research. Ultimately, a metric or a set of metrics is needed that accounts for breadth of
research, so that breadth of research can be measured and be included in an evaluation system
of scholars' scientific influence.

In this paper we describe research that explores the area of scholarly impact metrics and
breadth of research. The contributions of our work are as follows. We design a new metric to
measure scholars' breadth of research that builds on traditional metrics. We develop a multi-
stage method for extracting topics from a corpus (in our case computer science papers) and
calculate the scores of breadth of research for authors who have published papers in computer
science conferences. We design five simulation experiments that compare the relative
performance of existing metrics and our new metric for measuring breadth of research. We
measure the relationship of breadth of research and H-index for scholars who are authors in
our corpus. Finally, we explore the variation of breadth of research for scholars over time to
observe their paper publication behavior over their careers.

The structure of this paper is as follows. The next section describes related work in the areas
relevant to our work. Following that, we report on the dataset we used in our research. We
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then describe our process of dictionary extraction, topic extraction, paper assignment and
author assignment to topics. In the subsequent section we illustrate our new metric and
compare it to traditional metrics. The penultimate section describes simulation experiments to
show the performance of the new metric, the relationship between the new metric and metrics
of research impact, and the variation over time of breadth of research for scholars. Our
conclusions and possible future work are listed in the final section.

Related Work

There is a variety of existing literature relevant to the area of breadth of research. The areas
covered by this literature include topic extraction, topic relationship extraction, metrics design
and the relationship between different aspects of research evaluation systems.

There are many methods to associate topics to publication. The simplest one is to use the
classification codes in a dataset, such as ISI subject categories in Web of Science, as the set of
topics. But these categories are too coarse-grained and hide intra-disciplinary variability.
Another method is to use unsupervised learning algorithms to extract some topics according
to the content of papers or the citation network of papers. Topic modelling (Blei, Ng, &
Jordan, 2003) is one of the popular unsupervised learning algorithms based on content of
papers. This model has been used to identify the disciplines that comprise interdisciplinary
work funded by NSF (Nichols, 2014). The ACT model (author-conference-topic) (Li et al.,
2010) is an adaptation of Blei's model. Another approach is to use community detection in
networks as a basis for finding topics. One example is the use of two-round clustering
(Rosvall & Bergstrom, 2008) over the citation network to extract topic-associated
communities (Velden & Lagoze, 2013). Another method using both the citation network and
the word distribution of abstracts (Jo, Hopcroft, & Lagoze, 2011) finds temporally-ordered
topics from a corpus of scientific literature, such as the ACM dataset.

Understanding the relationship between topics is also an important step after topic extraction,
because the calculation of the similarity of topics is necessary for understanding the breadth
of research. Some researchers have extracted the relationships and used information
visualization techniques to represent the relationship between different topics. For example,
Yan (2013) detects the path between different disciplines to find the evolution of some areas.
Another paper describes a new method to find the diversity subgraph in a multidisciplinary
scientific collaboration network (He, Ding, Tang, Reguramalingam, & Bollen, 2013). An
interesting visualization method leverages the circle of science to visualize the relationship
between disciplines in one dimension (Boyack & Klavans, 2009).

Many metrics have been designed to measure factors related to scientific influence. The most
common metrics are impact factor and H-index, which measure the number of citations of
scholars' papers. Although these metrics have many problems such as lack of universality
between different disciplines (Kaur, Radicchi, & Menczer, 2013), they are still widely used in
systems like Google Scholar. Some alternative metrics also use the number of citations to
measure the scientific influence of scholars (Ruscio, Seaman, D’Oriano, Stremlo, &
Mabhalchik, 2012). They offer advantages over simple metrics such as H-index, but they also
focus solely on the citation count of papers. Other metrics based on the centrality of scholars
in a network (e.g., co-authorship) like PageRank and betweeness centrality (Bollen, Van de
Sompel, Hagberg, & Chute, 2009) are also widely used. However, the correspondence of
centrality to actual influence is unknown.

As mentioned earlier, commonly used metrics of scholarly influence fail to consider breadth
of scholars' research. In response a number of researchers have created some metrics for the
degree of interdisplinarity and more generally breadth of research. The report of quantitative
metrics and context in interdisciplinary scientific research (Wagner et al., 2011) is a good
survey for metrics for interdisciplinarity. Specialization and integration (Porter et al., 2007)
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are good metrics of interdisciplinarity because they consider similarity between disciplines
when measuring interdisciplinarity. They can be modified easily in the context of a diversity
of research topics. Some papers discuss different dimensions of interdisplinarity (Rafols &
Meyer, 2010; Rafols, Leydesdorff, O’Hare, Nightingale, & Stirling, 2012): diversity,
coherence and intermediation. They define diversity as a combination of variety, balance and
disparity. Coherence means link strength between different disciplines. Intermediation is
based on the network structure and is measured by betweenness centrality, clustering
coefficient and average similarity. Other papers describe metrics based on these dimensions.
Cassi, Mescheba, and de Turckheim (2014) divides the Stirling metric into “within
component” and “between component” to measure the diversity of articles. Jensen &
Lutkouskaya (2013) defines six indicators based on the dimensions and measure the breadth
of research at two levels (article and laboratory). Karlovéec and Mladeni¢ (2014) defines a
new diversity metric based on Generalized Stirling. The metric incorporates connectedness of
the citation graph into the original metric and applies it in exploratory analysis of the research
community in Slovenia. Roessner, Porter, Nersessian, and Carley (2012) validates the
interdisciplinarity metrics with ethnographic materials (field observations and unstructured
interviews).

Finally, some research has focused on the relationship between breadth of research and other
factors considered in scientometrics (not just scientific influence). One interesting paper finds
that the papers with an average degree of interdisciplinarity will get higher impact than papers
with too high or too low degree of interdisciplinarity (Sternitzke & Bergmann, 2008). The
results are convincing but metrics used in this paper are quite simple (Jaccard similarity and
cosine similarity). Two papers find that interdisciplinary papers have potentially lower impact
than more focused papers. One of them finds that multidisciplinary papers are not frequently
cited in contrast to the disciplinary papers (Levitt & Thelwall, 2008). The other explains how
high-ranked journals suppress interdisciplinary research (I Rafols & Meyer, 2010). Other
papers describe some factors that can encourage researchers to be involved in
interdisciplinary research work (Carayol & Thi, 2005; van Rijnsoever & Hessels, 2011). They
provide some theories to explain why scholars choose interdisciplinary projects. Some
findings support that there are no correlations between citation ranks and ranked
interdisciplinarity indices (Ponomarev, Lawton, Williams, & Schnell, 2014). In contrast, other
researchers confirm that the degree of interdisciplinarity is strongly correlated with the impact
factor (Silva, Rodrigues, Oliveira, & da F. Costa, 2013).

Dataset

We extract abstracts, full text and other metadata from the ACM digital library for
proceedings of major conferences in computer science. From these proceedings we select
authors whose names are unambiguous and who have published at least five papers. The
standard for unambiguity is whether using the full name as the query sent to Google Scholar
returns only one researcher profile with the same name. We extract the citation numbers and
H-indexes by crawling over Google Scholar. Overall we crawled H-indexes and citation
numbers for 8911 authors from Google Scholar in August 2014. We also used the Wikipedia
dataset to extract important terms in computer science.

Topic Extraction and Assignment

Both traditional metrics and the new metric designed in this paper require a distribution over
different topics or areas for authors. In order to generate topic distributions, we leverage the
text data in the papers of ACM digital library and implement three steps to form distributions:
dictionary extraction, topic extraction and author assignment.
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Dictionary Extraction

How to define topics is the first problem to be solved in the topic extraction and assignment.
In our work, we extract a dictionary of n-grams in computer science and cluster them into
topics using the Affinity Propagation algorithm (Frey & Dueck, 2007). Three different
sources of dictionaries are used in this paper: grams that are frequently used in papers, grams
that can be matched to their abbreviations in the papers, and entries in Wikipedia.

Dictionary extraction follows these steps:

1. Extract bigrams and trigrams that occur frequently in papers using a threshold of more
than 10 times for bigrams and more than 5 times for trigrams. The threshold helps to
eliminate noisy grams with low frequency.

2. Extract grams from papers that conform to the pattern "n-grams (abbreviation)", e.g.

machine learning (ML).
Intersect the results of step 1 and step 2 (3816 terms in total).

4. Build a network of entries in Wikipedia according to hyperlinks between them in the
website.

5. Make use of grams in step 3 and search their neighbours in the network of Wikipedia
terms. If their neighbours also occur frequently in papers (with frequency higher than
the thresholds mentioned above), add the terms into the final dictionary (6100 terms)

The top 5 bigrams and top 5 trigrams in the final dictionary are shown in Table 1:

(98]

Table 1. Grams with top frequency

Grams Frequency
User Interface 2372
Software development 2102
Programming language 2042
Software engineering 1988
Operating system 1761
Wireless sensor network 586
World wide web 467
Graphical user interface 305
Support vector machine 300
Discrete event simulation 287

Topic Extraction and Assignment

After extracting the dictionary, we count the co-occurrence measure for every pair of terms.
We then calculate the similarity between different terms by:
Cooccury; +1

ij = log M

ax(Cooccury;) + 2
The logarithm calculation makes the distribution of similarity more uniform and avoids the
influence of outliers of co-occurrence numbers. We weight co-occurrences of terms in
abstracts of papers more than those in full text based on the intuition that abstracts generally
have a stronger “topic signal”. Using the computed similarity matrix of terms, we then run
Affinity Propagation to cluster together similar terms and choose an exemplar for every
cluster. The benefits of Affinity Propagation are that there isn’t a need to parameterize the
number of clusters and that the exemplars for every cluster provide a straightforward
explanation of what these clusters are about. More than two hundred clusters, or topics, are
generated. Here are two examples of the clustering results:
Exemplar: digital library

Sim
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Terms:

citation analysis, citation index, community building, digital earth, digital library, digital
library software, digital preservation, digital reference, discourse analysis, dublin core.
Exemplar: machine learning

Terms:

active learning, adaptive control, bayes classifier, belief propagation, clinical trial,
computational learning theory , concept learning, conditional random field.

We then assign every paper a probabilistic assignment to the different topics according to
their respective frequency of n-grams associated with the particular topic. Therefore, every
paper will have a distribution over topics.

Author Assignment

Using the clusters of grams in computer science and the topic distributions for every paper,
we assign authors into different topics according to their papers. Every author is represented
by a distribution over topics, which are used to calculate scores of metrics. There does not
exist a “gold standard” list of researchers that ranks breadth of research that we can use to
evaluate how reasonable our topic assignments are. We list below some topic distributions for
well-known computer scientists to demonstrate our assignment.

John Koza

1 genetic programming 0.567
2 programming language 0.083
3 knowledge base 0.063
Peter Denning

1 memory management 0.107
2 computer systems 0.093
3 information systems 0.050
Eric Horvitz

1 user interface 0.082
2 information retrieval 0.067
3 machine learning 0.051
4 speech recognition 0.047

Breadth of Research Measurement

With the author distribution of topics established, the key question is how to translate this into
a measure of breadth of research for authors. As mentioned in the section describing related
work, many metrics have been used to measure the "degree of interdisciplinarity". Compared
to previous metrics to measure breadth of research, we design a new metric that considers the
topic distribution, similarity distribution and coherence within research topics.

Summary of Old Measurements

There are many measurements of diversity or interdisciplinary, like entropy (Weaver, 1949),
Simpson's index (Simpsons, 1949) and generalized Stirling (Stirling, 2007). Each of these is
computed as follows. Denote p; as the probability of topic distribution for an author over topic

i, d;j as the distance between topic i and topic j.
n

Entropy = Z —p; X log, (pi)

i=1
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n
Simpson =1 — Zpiz
i=1
Generalized Stirling = z df (pixp;)*P

LJj
Comparing them, only generalized Stirling considers not only the distribution of topics but
also the similarity between topics. The further the distance between topics in which an author
publishes papers, the more diverse will the author's research interest be. However, the
traditional metrics do not consider the notion of differing coherence between different
research topics. And the degrees of influence of topics with small proportions are very
limited. The new measurement is a modified version of the generalized Stirling metric and it
incorporates the coherence of topics and value of minor topics (topics with small proportions).

New Measurement

The new metric for breadth of research is defined as follows.

Denote dj; as the distance between two topics, which are defined as the average distance
(inverse of similarity defined above) between terms in the two topics, p; as the probability of
an author's paper belong to topic i, coh; as the coherence of topic i. Coherence of each topic is
the proportion of authors for whom the respective topic is their major research topic, which is
an important signal to illustrate whether a research topic concentrate on some core research
questions. Parameters «, 5,y are used to control the relative weights of different components.

Breadth of Research = z aii (pi + pj)B(Cohl- x Coh;)Y
Lj

We modify the product of p; and p; in generalized Stirling to summation of p; and p; because
the summation will give minor topics more chances to be counted into the measurement of
breadth of research. We add the coherence term into the metric because different topics have
different "density" within themselves. For example, some topics like digital library are less
coherent topics because there are many diverse subtopics in these topics. But for topics like
operation systems, researchers concentrate on several narrow subtopics. A researcher focusing
on digital library should have larger breadth of research than operating systems researchers if
other variables are controlled (so the gamma should have a negative value).

The new metric leverages properties of papers (topic distribution), properties of topics
(coherence) and properties of relationship (topic similarity). The tunable parameters give the
metric more flexibility to balance between different aspects of breadth of research.

Experiments

Simulation Experiment
There is no established standard for determining the quality of metrics of breadth of research.
Furthermore, there is no ground truth to show the rankings of scholars' breadth of research
with which to validate the various metrics. We propose an alternative evaluation method
based on a set of axioms concerning breadth of research and then test how the metrics
perform according to these axioms.
In addition to the definition of dj and coh; defined in the previous section, the following
definitions relate to the axioms.

* Denote 4; as the article i, C={ A, A> ...} as a collection of articles, and N¢ as the

number of articles in collection C.
* Denote #; as the topic i, D4(t) as the topic distribution of article 4 over topic ¢

QEeDa(®) = 1)
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* Denote D¢(t) as the topic distribution of collection C over topic t. Dc(t)
ZNLCZAL- ecDa,(t). e Dc(t) = 1)

* Denote score(C) as the score of a metric over the collection of articles C
Axiom1: Publish in Old Topics
If an author publishes a paper in a topic in which she has published many papers before, her
breadth of research should decrease.
Choose 1, s.t. t = argmax; Dc(t), construct a new article Auew, S.t. Dy, (£) = 1.
C'=C U{A,cw} . Then score(C’) < score(C).
Axiom2: Publish in New Topics
If an author publishes a paper in a new topic in which she has never published, her breadth of
research should increase.
Choose ¢, s.t. D¢ (1)=0, construct a new article A,ew, s.t. Dy (t) = 1,C" = C U {Apep}.
Then score(C') > score(C).
Axiom3: Publish in New Topics Twice
If an author publishes papers in two new topics in a sequence, the increase of breadth of
research in the second time should be smaller than the increase of that in the first time.
Choose ¢; and t2, s.t. D¢(t;)=0 , D¢ (t2)=0 , t;#t, construct two new articles A4,,; and Apew2,
st. Dy, (t) =1and Dy (t) = 1.C =C U{Apey1}, C"=0C" U{Apey2}. Then
score(C')-score(C) > score(C")-score(C').
Axiom4: Publish in Close Topics
If an author publishes a paper in a new topic close to the author's research interest, the

improvement of her breadth of research should be less than that of publishing a new paper in
a randomly chosen topic.

Randomly Choose #; s.t. Dc(t))=0, construct a new article Apews, S.t. Dy, (t;) = 1.
C'=C U{A,ew1}. Choose t; s.t. Dc(t;)=0 and arg ming(infi ecpe(t)>03Aeyt,)- Construct a
new article Anewz, 8.t. Dy (t3) = 1,C" = C" U {Apey2}. Then score(C") < score(C’)
Axiom5: Publish in Coherent Topics

If an author publishes a paper in a new topic with high coherence, the improvement of her
breadth of research should be less than that of publishing a new paper in a randomly chosen
topic.

Randomly Choose #; s.t. Dc(t))=0, construct a new article Apews, S.t. Dy, (t1) = 1.
C'=C U{A,ew1}- Choose t; s.t. Dc(t;)=0 and t, = arg max; (Cohe.). Construct a new
article Ayenz, s.t. Dy (t2) = 1,C" = C" U {Apewz}. Then score(C") < score(C)).

We implemented five simulation experiments based on the original dataset with 8911 authors

to test how the traditional metrics and our new metric conform to the axioms. The results are
shown in Table 2.

Table 2. Probability that metrics satisfy of the axioms

Entropy  Simpson’s GL Stirling New Metric
(xd =2;8=0.3) (e =1,=05yy=-0.5)
Axioml 0.99 0.99 0.97 0.88
Axiom?2 0.89 0.97 0.86 0.86
Axiom3 0.97 0.94 0.50 0.50
Axiom4 0 0 0.76 0.70
Axiom5 0 0 0.54 0.62
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The results show that entropy and Simpson's perform well in the first three axioms because
they don't consider distances between topics and introduce less noise. Because every new
topic will be regarded equally for these metrics, they cannot follow Axiom4 and AxiomS5.
Generalized Stirling and our metric perform reasonably well in Axioml and Axiom2, but
worse than entropy and Simpson's. They perform relatively badly in Axiom3 because
relatively bad performance on publishing a paper in new topic (Axiom2) will aggregate when
testing the performance of publishing two papers in two new topics. But they perform well in
Axiom4 because of the consideration of distances. Also we find our metric performs better
than generalized Stirling in Axiom5, which means coherences of topics and greater weights
on minor topics are beneficial when we consider variation of metrics when people publish in
topics with different coherence levels.

Parameter Sensitivity

The performance of new metric is influenced by the value of parameters a, f and y. We
tested the performance of the new metric with different settings. The results are shown in
Table 3, Table 4 and Table 5.

Table 3. Average Prob of satisfying the axioms with different a.

a=0.1 a=1 a =10 a =100

Axioml | 0.40 0.42 0.48 0.62
Axiom2 | 0.33 0.38 0.44 0.55
Axiom3 | 0.34 0.32 0.24 0.22
Axiom4 | 0.38 0.57 0.66 0.64
Axiom5 | 0.63 0.61 0.57 0.52

Table 4. Average Prob of satisfying the axioms with different £3.
p=0.1 =1 g =10 B =100

Axioml1 0.86 0.67 0.30 0.08
Axiom2 0.69 0.57 0.24 0.16
Axiom3 0.40 0.40 0.29 0.05
Axiom4 0.57 0.57 0.59 0.53
Axiom5 0.61 0.61 0.59 0.52
Table 5. Average Prob of satisfying the axioms with different y.
y =0.1 y=1 y =10 y = 100
Axioml1 0.58 0.47 0.45 0.45
Axiom?2 0.24 0.39 0.47 0.48
Axiom3 0.09 0.26 0.34 0.38
Axiom4 0.49 0.57 0.59 0.59
Axiom5 0.62 0.66 0.58 0.53

The tables show that the metric is very sensitive to the , f and y. In order to find the best
parameter setting, we calculated the average performance over five different simulation
experiments for every parameter settings. We selected the settings with highest average
performance and a minimum threshold of at least 0.5 in every experiment. The best setting for
Generalized Stirling is @ = 2, = 0.3. The best setting for the new metricisa = 1, = 0.5
and y = —0.5. They are used in the comparison of metrics in Table 2.
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Summation Modification

One of important modifications of our metric is the replacement of product with summation in
the second term of metric. We test the effect of this. If we control the distance term and
coherence term in the metric to be the same for every topic and set § = 1. The metric using
summation will definitely follow Axiom2 but not follow Axiom1 and Axiom3.

Let n represents the number of topic.

Axiom1: Publish in Old Topics

score(C) = Z d® (p; + p;)(coh x coh)¥ = (n — 1)d*(coh)?¥
Lj
= Z d* (p;' + p;")(coh X coh)¥ = score(C")
ij
Axiom2: Publish in New Topics
score(C) = Z d® (p; + p;)(coh x coh)¥ = (n — 1)d*(coh)?¥
Lj
< Z d® (p;' + p;")(coh X coh)” = (n)d*(coh)*” = score(C")
ij
Axiom3: Publish in New Topics Twice
score(C) = (n — 1)d*(coh)?
score(C") = (n)d%(coh)?¥
score(C'") = (n+ 1)d*(coh)?
score(C") — score(C') = score(C') — score(C)
From the derivation above, the performance of new metric in Axiom 1 and Axiom 3 should
be worse than the metric with product. The performance of Axiom 2 should be better than the

metric with product. So we construct a metric using product in the second term and compare
the performance of it with the new metric in different parameter settings.

Breadth of Research = Z df’j (piij)B(Cohi X Cohj)y
iJj
The results in Table 6 shows that the metric using summation outperforms product in Axiom
2, and metric using product outperforms summation in Axioml, which is consistent with the
results of derivation. But the results for the other three axioms are close between the two
metrics, which means the interaction between different terms in the metric (distance term,
distribution term and coherence term) will influence the results of simulation.

Table 6. Comparison between metric with summation and production.

Metric Parameter setting Axioml Axiom2 Axiom 3 Axiom4 Axiom5
Production | « = 0.1 =0.1y =-0.1 | 0.99 0.85 0.45 0.22 0.59
a=1008 =1y = -1 0.82 0.62 0.47 0.69 0.53
a=18=1y =-10 0.83 0.40 0.39 0.55 0.76
Summation| ¢ = 0.1 =0.1y =-0.1 | 0.97 0.89 0.45 0.22 0.59
a=100=1y=-1 0.69 0.69 0.50 0.69 0.55
a=1=1y=-1 0.69 0.47 0.41 0.54 0.77

Relationship between breadth of research and scientific impact

We tested the Pearson correlation between metrics of breadth of research and H-indexes of
scholars. Our results (Table 7) show that some metrics have a positive relationship with H-
index. Others have weak negative relationship. Because publication numbers may influence
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the correlation between breadth of research and scientific impact i.e. the increase of numbers
of publications may bring increase of breadth of research and increase of H-index
simultaneously to make them positively correlated to each other, we test the partial correlation
between metrics of breadth of research to H-index controlling publication numbers (Table 7).
They are weaker than Pearson correlations. And all the weak partial correlation scores don’t
illustrate strong correlation between metrics for breadth of research and H-index for scholars.

Table 7. Correlation between breadth of research and H-index.

Pearson Corr.  Partial Corr.
Entropy v.s. H-index -0.1722 -0.0769
Simpson’s v.s. H-index 0.2102 0.0922
GL Stirling v.s. H-index 0.4283 0.1820
New Metric v.s. H-index 0.4337 0.1832

The Variation of metrics over publication years

We illustrate in Figure 1 the variation of average scores of metrics for all the scholars over
publication years. Simpson's, generalized Stirling and our new metric initially increase and
then level off, which explains a possible publication pattern of scholars: scholars' breadth of
research may increase with the increase of publications in the early stage of their career. But
because of accumulation of publications, their accumulative breadth of research will not
change dramatically in the late years. For the entropy metric with base n, it is normalized by
topic number. So it keeps in a stable level over year, which shows a different pattern
compared to other metrics.

o /‘a\\w\_/._\/

0.75 -

Metrics

e Entropy
0.50 - A Simpson

® Glscore

+ NewMetric

relative scores

0.25-

0.00 -

1 1 1
5 10 15 20
publication years

Figure 1. Variation of metrics over publication years.

Conclusion and Future Work

In this paper, we describe a new metric based on generalized Stirling to evaluate breadth of
research for scholars in computer science. The metric makes use of topic distribution,
similarity between topics, and coherence of topics and it can capture the diversity aspects of
breadth of research. The simulation experiments show that traditional metrics can perform
well in some axiom, but they don't perform well when coherence within topics and similarity
between topics are considered. In contrast, generalized Stirling metric and the new metric for
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breadth of research work better in the simulation related to similarity between topics and
coherences but perform worse in the experiments of adding new topics. It is a trade-off
between the simplicity of metrics and the concern of topic similarity and coherence.

With the new metric for breadth of research, we find the correlation between breadth of
research and scientific metrics are weak, especially when we control publication numbers.
From our study, there’s no evidence to show whether the increase of breadth of research will
influence the impact of scholars' publication. Also, after testing the variation of the new
metric over years, we find a possible publication pattern of scholars: Breadth of research
increases in the beginning with the increase of publications. But they increase slowly when
publications have been accumulated.

There are a number of research questions that arise from the work described in this paper. The
first one is finding alternative methods to generate research topics. Unsupervised learning
models based on both text contents and citation information may be helpful to extract topics
and show topic variation for authors. The second question is how to improve the simulation
results for the new metric. The new metric performs better than general Stirling and other
traditional metrics in some aspects. But if more information from co-author and citation
network can be incorporated into the metric, the performance may be better and interpretable.
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