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Introduction and Motivation

There is a concerted effort to study science of
science in multiple spheres. However, a clear gap
exists in how to incorporate digital outputs, such as
software, as an integral component in scholarly
communication. This tension has become
aggravated in recent years because software can be
the end products in many scientific inquiries.
Therefore, there is the need to build a framework to
assess the impact of software in science. One
cornerstone in the framework is the design of text-
based methods to identify software entities in full-
text corpora because these entities are largely
mentioned in the text rather than formally cited in
the way as their publications counterpart. This
research-in-progress paper will serve this purpose
by the development and evaluation of a
bootstrapping method to automatically extract
software entities from a full-text data set.

Despite the effort of indexing digital outputs such
as Thomson Reuters’ Data Citation Index or
SageCite by University of Bath, UK., the use of
full-text data is necessary to identify patterns of
software references because these digital outputs
are referenced in unsystematical ways in scientific
literature. They can be embedded in documents by
digital object identifiers (DOIs), hyperlinks, and
featured on dedicated websites or simply be
mentioned in paragraphs, footnotes, endnotes,
acknowledgements, or supplementary materials. A
2014 citation study on three oceanographic data
sets showed that these digital outputs are more
likely to be mentioned in the text than formally
cited (Belter, 2014). Intuitively, one would think of
curating a list of software names; however, it will
not be feasible due to the velocity, variety, and
volume of software that has been developed and
applied constantly. Thus, merely using metadata or
static listings is incapable of capturing the full
extent of the impact of software. Instead, full-text
publication data provide the crucial context for this
purpose.

This study will use a bootstrapping method to
identify software uses in a full-text data set. It will
allow us to expand the impact and attribution
mechanism by assessing the impact of software.
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Methods

The bootstrapping method is used to extract
software entities from full-text papers. It is a self-
sustaining technique used to iteratively improve a
classifier’s performance through seed terms (Riloff
& Jones, 1999; Riloff, Wiebe, & Wilson, 2003).
The bootstrapping process contains the following
steps: (1) Label seed terms or learned entities in the
text. Seed terms are used in the first iteration, and
learned entities are used in other iterations. (2)
Generate contextual patterns of seed terms in the
first iteration, and create contextual patterns of
learned entities in other iterations. (3) Score these
contextual patterns and select top ranked N patterns
as candidate patterns. (4) Score entities extracted by
candidate patterns and select top ranked M entities
as learned entities. (5) Go back to the first step until
the system cannot learn any new positive entities.
The calculation of pattern scores and entity scores
determine the effectiveness of the bootstrapping
method. If a pattern gets a higher score, then it is
selected into the candidate pattern pool. Entities
extracted by these candidate patterns are considered
as candidate entities. To boost the performance, we
incorporated three heuristic rules to the calculation
of pattern scores. The first feature is an unlabeled
entity containing at least one uppercase letter. An
entity with this feature gets a score of 1 if it
contains one or more uppercase alphabetic letters;
otherwise, it gets a score less than 1. The second
feature focuses on version numbers. An entity with
this feature gets a score of 1 if a version number is
collocated. The third and fourth features deal with
the presence of trigger words: a score of 1 if the left
context (third feature) or right context (fourth
feature) of an entity contains trigger words.

Preliminary Results

To construct a corpus that has a good balance
between sentences having software entity that
mentions and does not mention, we selected 427
sentences that a particular software entity is
mentioned from papers published between January
6 and December 29, 2013 in the data set. 573
sentences that do not contain software entities were
also included in the corpus. We use this data
collection method to attain a balanced experiment
set to evaluate several entity extraction methods.



Experiments that use randomly sampled sentences
will be pursued as future work. We used nine
frequently occurring seed terms in the proposed
bootstrapping method, including SAS, SPSS,
MotlV, PAML, rtGADEM, Limma, PICS, PHYLIP,
and Minitab. To prepare the gold standard, we
manually labeled software entities in the
experiment data set and in total annotated 292
unique entities. The annotations are considered as
the gold standard.

Table 1 displays the experimental results of the
RlogF metric entity extraction system (Thelen &
Riloff, 2002), Stanford Pattern-based Information
Extraction and Diagnostics (SPIED), and our
software extraction system. All methods in Table 1
used the same sets of seed terms, stop word list, and
common word list.

Table 1. Experimental results of software

extraction.
System Prec  Recall F
RlogF 91% 7% 0.12
SPIED 40% 28% 0.33
OurSystem 80% 62% 0.70

Table 1 shows that our system performed better
than RlogF and SPIED based on the F score.
Although RlogF has the highest precision, it missed
a great number of software entities and resulted in
the lowest recall. By comparing the software
entities extracted by our system and the gold
standard, we found seven of the one-time occurring
entities were not identified by our system thus
reducing the recall. We speculate that the recall
may be improved when more sentences that contain
low frequently occurring software entities are added
to the data set such that the bootstrapping method
will be able to learn their contexts.

Table 2. Popular software use in science.

Freq Software entities

Prism, PASW, Vienna RNAfold, survival,
Stata, SeqMan, rtracklayer, R2ZWinBUGS,
Quantity One, PyPop, Origin, Microsoft

2 Office Excel, IMP, GeneSpring GX,
genefilter, FlowJo, Effective T3, Cytoscape,
COMSTAT, CellquestPro, APE, ADE4,
MetaMorph Imaging System

SigmaPlot, WinBUGS, T3SEpre, Statistica,
MetaMorph, TIMAT?2, stats, Statistical
Package for the Social Sciences, STADEN,
limma Bioconductor

4 HyPhy, IRanges, ImageJ, Affy, Vienna RNA

5 SigmaStat, MEGA, Vegan, Geneious

R, SAS, SPSS, MotlV, Bioconductor, Weka,
PAML, rtGADEM, Limma, PICS, PHYLIP,
Minitab, Cellquest, RNAfold, Image J,
GraphPad Prism
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Table 2 shows 59 popular software entities in
science which occurred more than once in the test
corpus based on our extraction method. Statistical
software packages are well presented in Table 2;
however, we also see some domain-specific open
access software tools—future impact assessment
may primarily focus on these.

Conclusion and Future Work

The contemporary research landscape is changing:
software has increasingly been developed and
applied in many data-driven projects. Therefore,
there is the need to assess its impact on science and
to incorporate software in scientific evaluations.
This paper is part of a larger effort to build a
scientific assessment framework for digital outputs
that include software and data. It has proposed a
bootstrapping method to extract software entities in
a full-text corpus. Results show that it has
successfully extracted software entities with the F
score at the 0.7 level which is an improvement over
the baseline methods RlogF and SPIED. Future
work will involve using the whole PLOS ONE full-
text set and introducing more advanced features to
further enhance the performance of the method.
Research will also benefit from integrating the
number of full-text software entity mentions with
citation- and usage-based metrics to complement
the impact assessment of software.
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