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Abstract 
In spite of recent advances in field delineation methods, enduring problems such as the impossibility to justify 
necessary thresholds and the difficulties in comparing thematic structures obtained by different algorithms leave 
bibliometricians with a sense of uneasiness about their methods. In this paper, we propose and demonstrate a 
new approach to the delineation of thematic structures that attempts to fit the methods for topic delineation to the 
properties of topics. We derive principles of topic delineation from a theoretical discussion of thematic structures 
in science. Applying these principles, we cluster citation links rather than publication nodes, use predominantly 
local information and grow communities of links from seeds in order to allow for pervasive overlaps of topics. 
The complexity of the clustering task requires the application of a memetic algorithm that combines probabilistic 
evolutionary strategies with deterministic local searches. We demonstrate our approach by applying it to a 
network of 14,954 Astronomy & Astrophysics papers and their cited sources. 

Conference Topic 
Methods and techniques (special session on algorithms for topic detection) 

Introduction 
The identification of thematic structures (topics or fields) in sets of papers is one of the 
recurrent problems of bibliometrics. It was deemed one of the challenges of bibliometrics by 
van Raan (1996) and is still considered as such despite the significant progress and a plethora 
of methods available. Major developments since van Raan’s paper include approaches that 
cluster the whole Web of Science based on journal-to-journal citations, co-citations, or direct 
citations, the advance of hybrid approaches that combine citation-based and term-based 
techniques, and term-based probabilistic methods (topic modelling). However, 
methodological problems endure and leave bibliometricians with a sense of uneasiness about 
their methods. Advanced methods still apply thresholds that must be arbitrarily set and 
adapted to the specific structures that shall be obtained. The relevance of the structures 
identified by bibliometric methods are difficult to verify independently, and the relationships 
between thematic structures are difficult to assess. A recent analysis by Hric et al. (2014) 
found that current algorithms for the detection of communities in network of papers respond 
to topological properties of networks but not necessarily to the underlying real-world 
properties of nodes clustered. This observation casts further doubts on the fundamental 
assumption underlying bibliometric methods for topic delineation, namely that the topics 
reconstructed using structural properties of networks of papers reflect thematic properties of 
the research published in those papers.  
In this paper, we propose and demonstrate a new approach to the delineation of thematic 
structures. We derive principles of topic delineation and criteria for the assessment of 
algorithms from a theoretical discussion of properties of thematic structures in science. 
Applying these principles, we cluster citation links rather than publication nodes, use 
predominantly local information, and grow communities from seeds in order to allow for 
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pervasive overlaps of topics. The complexity of the clustering task requires the application of 
a memetic algorithm that combines nondeterministic evolutionary strategies with 
deterministic local searches. We demonstrate our approach by applying it to a network of 
14,954 Astronomy & Astrophysics papers and their cited sources. 

Strategy, Methods and Data 

Theoretical considerations and strategy 
We define topics as theoretical or empirical knowledge about objects or methods of research 
that is a common focus for a set of research processes because it provides a reference for the 
decisions of researchers – the formulation of problems, the selection of methods or objects, 
the organisation of empirical data, or the interpretation of data (on the social ordering of 
research by knowledge see Gläser 2006). This definition resonates with Whitley’s (1974) 
description of research areas but abandons the assumption that topics form a hierarchy. It only 
demands that some scientific knowledge is perceived similarly by researchers and influences 
their decisions.  
This weak definition is linked to three properties of topics that create the problems for 
bibliometrics:  
1) The fractal nature of knowledge has been described by van Raan (1991) and Katz (1999). 
Topics can have any ‘size’ (however measured) between the smallest (emerging topics that 
just concern one researcher) and very large thematic structures (fields or even themes cutting 
across several fields). Methods for topic identification should thus not be biased against any 
particular topic size. 
2) Given the multiple objects of knowledge that can serve as common reference for 
researchers, topics inevitably overlap. Publications commonly contain several knowledge 
claims, which are likely to address different topics (Cozzens, 1985; Amsterdamska & 
Leydesdorff, 1989). Methods for topic identification should thus take into account that 
bibliometric objects (publications, authors, journals, and cited sources) are likely to belong to 
several topics simultaneously. Methods also should enable the reconstruction of topics that 
overlap pervasively (i.e. not only in their boundaries). 
3) All topics emerge from coinciding autonomous interpretations and uses of knowledge by 
researchers (see e.g. the case studies discussed by Edge and Mulkay, 1976, pp. 350-402). 
While individual researchers may launch topics and advocate them, the latter’s content and 
fate depends on the ways in which they are used by others. From this follows that topics are 
local in the sense that they are primarily topics to the researchers whose decisions are 
influenced by and who contribute to them. Methods for topic identification can reconstruct 
this insider perspective by using local information. Global approaches create different 
representations of topics by finding a compromise between insider perspectives and all 
outsider perspectives on topics.  

Methods 
For a detailed description of the method see Havemann, Gläser, & Heinz (2015). We 
operationalise ‘topic’ as a set of thematically related papers but cluster citation links instead 
of papers because the former can be assumed the thematically most homogenous bibliometric 
objects (see Evans & Lambiotte, 2009; and Ahn, Bagrow & Lehmann, 2010 on link 
clustering).  
Cost Function: We followed the suggestion by Evans and Lambiotte (2009) to obtain link 
clusters by clustering vertices in a network’s line graph and defined a local cost function 
Ψ*(L) of link set L in the line-graph approach. The internal degree kiin (L) of node i is defined 
as the number of links in L attached to i. The external degree of a node is obtained by 
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subtracting the internal from the total degree: ki
out(L) = ki – ki

in(L). External degrees ki
out are 

weighted with subgraph membership-grade kiin/ki	
  of boundary node i to obtain a measure of 
external connectivity of link set L: 

𝜎𝜎 𝐿𝐿 =
𝑘𝑘!!"# 𝐿𝐿 𝑘𝑘!!"(𝐿𝐿)

𝑘𝑘!

!

!!!

        (1) 

where n is the number of all nodes. The sum can be restricted to boundary nodes because only 
for boundary nodes of L is kioutkiin	
  >0. A simple size normalization that accounts for the finite 
size of the network is achieved by adapting the ratio cut suggested by Wei and Cheng (1989) 
for link communities, which leads us to the cost function ratio node-cut Ψ*(L): 

𝛹𝛹∗(𝐿𝐿) = 𝜎𝜎(𝐿𝐿)

𝑘𝑘𝑖𝑖𝑖𝑖(𝐿𝐿)(1− 𝑘𝑘𝑖𝑖𝑖𝑖 𝐿𝐿2𝑚𝑚 )
        (2) 

where m is the number of all links and kin(L) is the sum of all internal degrees ki
in(L). Ψ*(L) 

essentially relates external to total connectivity of link set L. It can be used to identify link 
communities (sets of links that are well connected internally and well separated from the rest 
of the graph) by finding local minima in the cost landscape.  
Since the cost landscape is often very rough―has many local minima that sometimes 
correspond to very similar subgraphs―the resolution of the algorithm must be defined by 
setting a minimum distance (number of links that differ) between subgraphs corresponding to 
different local minima. We define the range of a community as the environment in which no 
subgraph exists that has a lower Ψ* value. For our experiments with the citation network of 
astrophysical papers we set a community’s minimum range at one third of its size.  
Algorithm: The cost function Ψ* is used in a clustering algorithm that grows communities 
from seeds. This approach fulfils two more principles derived from our definition of a topic. 
The independent construction of each community prevents a size bias of the algorithm and 
enables pervasive overlaps.  
 
choose a connected subgraph as a seed 
initialize population P by mutating the seed with high variance several times and adapt mutants 
while the best community is not too old do 

mutate the best community with low variance and adapt the mutants 
if a mutant is new and its cost is lower than highest cost then  

add it to population P 
end if 
cross the best community with other communities and adapt the offspring 
if offspring is new and its cost is lower than highest cost then 
 add it to population P 
end if 
select the best individuals so that the population size remains constant 
if there is no better best community for some generations and innovation rate is low then 
 renew the population (mutate the best community with high variance and adapt it) 
 select the best individuals so that the population size remains constant 
end if 

end while 

Figure 1. Pseudocode of memetic evolution. 

The task of finding communities in large networks is always very complex and requires the 
use of heuristics. We chose a memetic algorithm that accelerates the search by combining 
non-deterministic evolution with a deterministic local search in the cost landscape (Neri, 
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Cotta, & Moscato, 2012). In our algorithm, populations of subgraphs evolve because after a 
random initialization of a population of some definite size, the genetic operators of crossover, 
mutation, and selection are repeatedly applied (Fig. 1). Each crossover and mutation is 
followed by a local search.  

Data 
The algorithm is applied to the citation network of 14,954 papers published 2010 in 53 
journals listed in the category Astronomy & Astrophysics of the Journal Citation Reports 
2010 (the journal Space Weather with 45 articles was accidentally left out). We downloaded 
all articles, letters and proceedings papers from the Web of Science. Reference data had to be 
standardised with rule-based scripts. To reduce the complexity of the network, we omitted all 
sources that are cited only once because they do not link papers and their removal should not 
unduly influence clustering. We excluded 184 papers that are not linked to the giant 
component of the citation network and proceeded with a network of 119,954 nodes that are 
connected by 536,020 citation links. We neglected the direction of citation links and analysed 
an undirected unweighted connected graph. 

Experiments and Preliminary Results 

Constructing the seed population  
Since topics can assume all possible sizes, the algorithm should start from differently sized 
seed graphs. In our experiments, we combined two strategies for obtaining seeds. First, we 
used Ward clustering with a similarity measure derived from theoretical considerations 
(Gläser, Heinz & Havemann, 2015). We ordered all hard clusters by their stability (the length 
of their branch in the dendrogram) and selected the most stable but not too large clusters (a 
total of 63) as seeds. In addition, we used the citation links of 969 randomly selected papers 
as seed graphs.  
Each seed was first adapted by a local search and then used to initialise the population of 16 
different communities by mutating the seed with a variance of 15%.  
Owing to the randomness of the evolutionary mechanisms the choice of seed graphs is 
unlikely to affect the clustering results. However, it is likely to effect the efficiency of the 
algorithm.  

Running the memetic algorithm 
Up to ten experiments were run with each seed. The standard mutation variance in each expe-
riment was 5%, i.e. up to 5% of the nodes were randomly exchanged. The variance was 
increased to 15% for one mutation if Ψ* values did not improve for 10 generations. Again, we 
assume these parameters to effect the algorithm’s efficiency rather than its outcomes. 

Table 1. Examples of experiments with the memetic algorithm.  

 
Community 

Seed sub-graph Number of 
generations 

Community Remaining nodes 
from seed Size Ψ* value Size Ψ* value 

1 13,469 .0692 339 10,586 .0339 10,380 
2 19,697 .1174 233 35,159 .0397 18,860 
3 35 .4075 232 33 .0047 0 
4 76 .5498 203 28 .0975 0 

 
Experiments with the seeds described above resulted in a total of 3,944 distinct communities, 
1,375 of which were disregarded because there were better communities within a distance of 
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less than one third of their size. The remaining 2,569 communities were ordered by increasing 
Ψ* values. Table 1 provides exemplary descriptions of some of the experiments. We then 
calculated the relative coverage of the network as a function of Ψ* by successively uniting the 
L-sets of the ranked communities. Relative coverage is the ratio of the union's size to the 
number of all links m (Fig. 2). This function has a sharp bend at Ψ*=0.10458, shortly below 
maximum coverage. We used this Ψ* value as cutoff point, which gives us a preliminary 
result of 154 communities that cover 98.9 % of all links.  
Currently, each of these 154 best communities is used as a seed for a refined local search that 
adds or removes single links instead of nodes with all their links. For some of the 154 
communities this additional local search has already led to better communities.  
 

 
Figure 2. Relative coverage of the network by communities as a function of a Ψ* threshold. 

Preliminary results 
The 154 communities vary in their size between 9 and 49,324 nodes. Some of the 
communities overlap pervasively. Seventy communities were not a subset of any other 
community. The other 84 communities were subsets of one (12 communities) to 28 other 
communities (1). In Figure 3 we plot sizes and cost of the 154 best communities. Blue circles 
represent communities that are subsets of others. Green circles represent communities that 
overlap with another community in 95% of their nodes. All other communities are represented 
by red circles. The numbers in four circles refer to the communities described in Table 1. 
The communities form a poly-hierarchy because some smaller communities are subsets of 
two larger communities that have no hierarchical subset relation. A community can also have 
a rest of nodes which are not members of any of its sub-communities.  
 

1058



 
Figure 3. Sizes and Ψ* values of a set of communities covering 98.9% of the graph. 

Conclusions 
The communities have the structural properties of topics that were derived from the 
definition. Comparisons with other cluster solutions and tagging of communities will show 
whether the communities are consistent. We will test the dependence of results on parameter 
and seed choice with a smaller network. Ultimately, only a discussion with experts can show 
whether the communities obtained provide one of the possible scientifically meaningful 
cluster solutions of the astronomy and astrophysics dataset.  
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